亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multigroup differential evolutionary and multilayer Taylor dynamic network planning for zero-carbon grid extension model with user satisfaction

渡线 数学优化 网格 帕累托原理 人口 可再生能源 计算机科学 多目标优化 工程类 模拟 数学 几何学 人口学 人工智能 社会学 电气工程
作者
Linfei Yin,Xuedong Wei
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:297: 117753-117753
标识
DOI:10.1016/j.enconman.2023.117753
摘要

Grid planning is a long-term process with uncertainties at all stages, which requires a versatile design approach to address potential risks. From the perspectives of system operation and user participation, a zero-carbon grid extension model with user satisfaction for the cooperative operation of wind power and conventional energy is proposed in this study to obtain the equipment planning address with the objectives of minimizing the total cost of grid investment, minimizing the power loss and optimizing renewable energy capacity. Based on the consideration of long-term net load growth uncertainty, and real-time feedback on user experience, a multigroup differential evolutionary and multilayer Taylor dynamic network planning method is proposed to calculate the carrying capacity of new construction of power grids for loads and distributed power sources at multi-temporal scales. The planning scheme is sequentially specified by the current objective function value and expected future objective function value. In particular, the multi-objective function value is obtained by the strategy of adaptive mutation and elite selection. The best individuals are selected to guide the population variation, and the crossover rate is updated by evolutionary information, which improves algorithm convergence and obtains the optimal Pareto solution set. In the IEEE 14-bus systems in phase 3, compared to the best model which considers no user willingness, only a single objective, and without multi-stage, the proposed model in the study reduces the total investment cost by 27.33%, 36.99%, and −13.68%, and decreases the network loss by 26.11%, 34.62%, and 25.48%, respectively. Compared with the algorithm with the second best performing, the inverted generational distance of the proposed method in the study decreases by 4.81%. The results of the IEEE 118-bus systems in phase 5 validate the feasibility and effectiveness of the proposed method in obtaining an extended solution, which significantly reduces the investment risk, allocates suitable energy equipment, and promotes renewable energy efficient utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoshoujun完成签到,获得积分10
刚刚
郗妫完成签到,获得积分10
4秒前
likemangren完成签到,获得积分10
44秒前
xz完成签到 ,获得积分10
54秒前
1分钟前
九九发布了新的文献求助10
1分钟前
summer完成签到 ,获得积分10
1分钟前
threewei发布了新的文献求助20
1分钟前
athena发布了新的文献求助10
1分钟前
winkyyang完成签到 ,获得积分10
1分钟前
1分钟前
threewei完成签到,获得积分10
1分钟前
杰帅发布了新的文献求助10
1分钟前
大模型应助YY采纳,获得10
1分钟前
等等完成签到 ,获得积分10
1分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
gaoshou完成签到,获得积分10
2分钟前
showrain完成签到,获得积分20
2分钟前
爱静静应助gaoshou采纳,获得10
2分钟前
showrain发布了新的文献求助10
2分钟前
Jason发布了新的文献求助10
2分钟前
西扬完成签到 ,获得积分10
2分钟前
3分钟前
Hua发布了新的文献求助10
3分钟前
Hua完成签到,获得积分10
4分钟前
瘦瘦瘦完成签到 ,获得积分10
5分钟前
喜悦兔子完成签到 ,获得积分10
5分钟前
斯文的苡完成签到,获得积分10
5分钟前
LJ徽完成签到 ,获得积分10
6分钟前
6分钟前
雪白的面包完成签到 ,获得积分10
6分钟前
wanci应助Aaaaaa瘾采纳,获得10
6分钟前
lixuebin完成签到 ,获得积分10
7分钟前
闪闪妍发布了新的文献求助10
7分钟前
绝尘完成签到,获得积分10
7分钟前
绝尘发布了新的文献求助20
7分钟前
科研通AI2S应助闪闪妍采纳,获得10
7分钟前
程住气完成签到 ,获得积分10
7分钟前
8分钟前
隐形曼青应助杰帅采纳,获得10
8分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139573
求助须知:如何正确求助?哪些是违规求助? 2790439
关于积分的说明 7795316
捐赠科研通 2446925
什么是DOI,文献DOI怎么找? 1301487
科研通“疑难数据库(出版商)”最低求助积分说明 626248
版权声明 601159