Collaborative optimization design for district distributed energy system based on energy station and pipeline network interactions

管道(软件) 管道运输 能量(信号处理) 数学优化 尺寸 遗传算法 Dijkstra算法 计算机科学 流量网络 能源消耗 工程类 实时计算 模拟 最短路径问题 机械工程 数学 艺术 图形 统计 理论计算机科学 视觉艺术 电气工程
作者
Yingjun Ruan,Tingting Xu,Guangyue Chen,Weiguo Zhou,Jiawei Yao,Fanyue Qian,Chenyu Huang,Meng Hua
出处
期刊:Sustainable Cities and Society [Elsevier]
卷期号:100: 105017-105017 被引量:2
标识
DOI:10.1016/j.scs.2023.105017
摘要

District distributed energy systems (DDESs) are widely used worldwide due to their environmentally-friendly and energy-saving characteristics. The strong correlation and coupling of energy stations and pipeline networks lead to difficulties in the collaborative optimization design of the DDES. To minimize the total annual cost of the system, this research proposed a collaborative optimization model to realize the integrated design of the DDES. The energy distance method is combined with the K-means cluster method to solve the problem of locating and sizing energy stations. The pipelines planning algorithm based on "Dijkstra algorithm (DA) + genetic algorithm (GA)" is used to optimize the pipeline layout and diameter simultaneously. The improved DA method continuously updates the cost full adjacency matrix and pipe diameter matrix of each pipe segment by optimizing the access sequence of user nodes, and finally obtains the optimal layout and pipe diameter of the pipe network at the same time. Moreover, this paper reveals the influence factors that should be considered in the planning of DDES, such as the number of energy station and flow velocity. The results indicate that compared to traditional optimization processes, the collaborative method proposed in this paper reduced the total annual cost of the pipeline network by 20.5 %. The improved DA method solves the problem of pipeline sharing while preventing the system from falling into local optima. Moreover, optimizing the number of energy stations and flow velocity can reduce annual cost of pipelines by 0–14 % and 0–20 %, respectively. This study provides theoretical guidance and technical support for researchers in the planning and designing of DDES.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的未来完成签到,获得积分10
2秒前
上岸完成签到,获得积分10
2秒前
3秒前
曾子曰完成签到,获得积分10
3秒前
gaogao应助典雅的曼卉采纳,获得30
4秒前
怀忑发布了新的文献求助10
5秒前
56jhjl完成签到 ,获得积分10
7秒前
10秒前
日尧完成签到,获得积分10
12秒前
14秒前
14秒前
Ashley发布了新的文献求助10
15秒前
学术老6完成签到 ,获得积分10
15秒前
酷炫依白发布了新的文献求助10
17秒前
西西完成签到,获得积分10
17秒前
qujinzhi完成签到 ,获得积分10
18秒前
亵渎完成签到,获得积分10
18秒前
苏苏发布了新的文献求助10
18秒前
Steve完成签到 ,获得积分10
19秒前
王云云完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
Ulrica发布了新的文献求助10
25秒前
汉堡包应助明亮寒安采纳,获得50
25秒前
26秒前
27秒前
28秒前
28秒前
烟花应助Lijunjie采纳,获得10
28秒前
酷炫依白完成签到,获得积分10
28秒前
科研靓仔发布了新的文献求助10
29秒前
Anais关注了科研通微信公众号
30秒前
Sicily发布了新的文献求助10
31秒前
lili完成签到,获得积分10
33秒前
雪白玲完成签到,获得积分20
33秒前
34秒前
刘耳朵发布了新的文献求助20
35秒前
fzh发布了新的文献求助10
36秒前
oops完成签到,获得积分10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140221
求助须知:如何正确求助?哪些是违规求助? 2791023
关于积分的说明 7797567
捐赠科研通 2447480
什么是DOI,文献DOI怎么找? 1301898
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194