Classification of multi-type bearing fault features based on semi-supervised generative adversarial network (GAN)

计算机科学 人工智能 深度学习 Softmax函数 稳健性(进化) 聚类分析 机器学习 无监督学习 模式识别(心理学) 断层(地质) 数据挖掘 人工神经网络 地震学 地质学 生物化学 化学 基因
作者
Xiao Li,Feng‐Liang Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025107-025107 被引量:11
标识
DOI:10.1088/1361-6501/ad068e
摘要

Abstract Fault diagnosis is a crucial technology for ensuring the reliable and efficient operation of industrial systems. With the advancement of industrial informatization and intelligence, fault diagnosis methods have the trend shifting from traditional signal processing to deep learning. However, traditional deep learning models are not suitable for industrial scenarios with limited labeled data, imbalanced categories. To address these challenges, this paper proposes a novel approach based on semi-supervised generative adversarial networks (SGANs) to systematically study the fault diagnosis of rolling bearings in the case of unlabeled samples and sparsely labeled samples. In this work, the vibration time-domain vibration signal of the bearing is firstly transformed into a spectrum signal through the fast Fourier transform. This transformed signal is then fed into the GAN model to extract multi-layer sensitive features, providing a deeper understanding of the underlying fault characteristics. Subsequently, the SGAN method utilizes unsupervised learning via spectral clustering algorithms to automatically classify fault patterns in industrial equipment. Furthermore, it enhances semi-supervised learning by incorporating limited label information through softmax functions, effectively discerning the authenticity of unlabeled data. For the effectiveness of SGAN for bearing fault diagnosis, two diverse datasets are utilized including the widely-used Case Western Reserve University dataset and data acquired from South Ural State University. Compared to alternative models, the results underscore SGAN’s robustness, achieving high recognition accuracy and clustering performance. The proposed methodology contributes to the advancement of fault diagnosis technologies by combining unsupervised and semi-supervised learning techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zero发布了新的文献求助10
刚刚
diaoyulao完成签到,获得积分10
刚刚
刚刚
外向半青发布了新的文献求助10
1秒前
1秒前
vsoar完成签到,获得积分10
1秒前
1秒前
大秦骑兵发布了新的文献求助10
1秒前
醉熏的尔容完成签到,获得积分10
2秒前
大力若烟完成签到,获得积分10
2秒前
2秒前
英姑应助小赵医生采纳,获得10
2秒前
窝窝人发布了新的文献求助10
3秒前
Owen应助莫灭龙采纳,获得10
3秒前
何大青完成签到,获得积分10
3秒前
流流124141完成签到,获得积分10
4秒前
4秒前
4秒前
36456657应助小白狮666采纳,获得10
5秒前
秦醉薇发布了新的文献求助10
5秒前
yoona发布了新的文献求助10
5秒前
尔东完成签到,获得积分10
5秒前
深情安青应助文龙采纳,获得30
5秒前
卡皮巴拉发布了新的文献求助10
5秒前
打打应助ensolitemp采纳,获得10
6秒前
lys完成签到,获得积分10
6秒前
6秒前
大力若烟发布了新的文献求助10
6秒前
开心衬衫发布了新的文献求助10
6秒前
7秒前
李爱国应助lijia3采纳,获得10
7秒前
7秒前
8秒前
zydd发布了新的文献求助10
8秒前
yinghuo完成签到,获得积分10
8秒前
8秒前
9秒前
无月即明完成签到 ,获得积分10
9秒前
9秒前
功夫兔发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3541424
求助须知:如何正确求助?哪些是违规求助? 3118752
关于积分的说明 9336897
捐赠科研通 2816702
什么是DOI,文献DOI怎么找? 1548592
邀请新用户注册赠送积分活动 721587
科研通“疑难数据库(出版商)”最低求助积分说明 712729