清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Joint Admission Control and Resource Allocation of Virtual Network Embedding Via Hierarchical Deep Reinforcement Learning

计算机科学 嵌入 网络拓扑 人工智能 网络虚拟化 资源(消歧) 虚拟化 计算机网络 操作系统 云计算
作者
Tianfu Wang,Li Shen,Qilin Fan,Tong Xu,Tongliang Liu,Hui Xiong
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tsc.2023.3326539
摘要

As an essential resource management problem in network virtualization, virtual network embedding (VNE) aims to allocate the finite resources of physical network to sequentially arriving virtual network requests (VNRs) with different resource demands. Since this is an NP-hard combinatorial optimization problem, many efforts have been made to provide viable solutions. However, most existing approaches have either ignored the admission control of VNRs, which has a potential impact on long-term performances, or not fully exploited the temporal and topological features of the physical network and VNRs. In this paper, we propose a deep H ierarchical R einforcement L earning approach to learn a joint A dmission C ontrol and R esource A llocation policy for VNE, named HRL-ACRA. Specifically, the whole VNE process is decomposed into an upper-level policy for deciding whether to admit the arriving VNR or not and a lower-level policy for allocating resources of the physical network to meet the requirement of VNR through the HRL approach. Considering the proximal policy optimization as the basic training algorithm, we also adopt the average reward method to address the infinite horizon problem of the upper-level agent and design a customized multi-objective intrinsic reward to alleviate the sparse reward issue of the lower-level agent. Moreover, we develop a deep feature-aware graph neural network to capture the features of VNR and physical network and exploit a sequence-to-sequence model to generate embedding actions iteratively. Finally, extensive experiments are conducted in various settings, and show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue. Our code is available at https://github.com/GeminiLight/hrl-acra .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinjie发布了新的文献求助10
7秒前
12秒前
cy0824完成签到 ,获得积分10
23秒前
qiongqiong完成签到 ,获得积分10
26秒前
jojoly应助xinjie采纳,获得10
27秒前
jojoly应助xinjie采纳,获得10
27秒前
丘比特应助曾经问雁采纳,获得10
28秒前
优雅的平安完成签到 ,获得积分10
50秒前
GMEd1son完成签到,获得积分10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
有人应助科研通管家采纳,获得10
1分钟前
1分钟前
飞飞发布了新的文献求助10
1分钟前
sa完成签到 ,获得积分10
1分钟前
飞飞完成签到,获得积分10
1分钟前
xinjie发布了新的文献求助10
2分钟前
冉亦完成签到,获得积分10
2分钟前
GRATE完成签到 ,获得积分10
2分钟前
我有我风格完成签到 ,获得积分10
2分钟前
乔杰完成签到 ,获得积分10
2分钟前
华仔应助xinjie采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
3分钟前
神勇的天问完成签到 ,获得积分10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
无极微光应助科研通管家采纳,获得50
3分钟前
无极微光应助科研通管家采纳,获得50
3分钟前
3分钟前
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
有人应助科研通管家采纳,获得10
3分钟前
NINI完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789037
求助须知:如何正确求助?哪些是违规求助? 5714702
关于积分的说明 15474095
捐赠科研通 4916983
什么是DOI,文献DOI怎么找? 2646691
邀请新用户注册赠送积分活动 1594335
关于科研通互助平台的介绍 1548797