Joint Admission Control and Resource Allocation of Virtual Network Embedding Via Hierarchical Deep Reinforcement Learning

计算机科学 嵌入 网络拓扑 人工智能 网络虚拟化 资源(消歧) 虚拟化 计算机网络 操作系统 云计算
作者
Tianfu Wang,Li Shen,Qilin Fan,Tong Xu,Tongliang Liu,Hui Xiong
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tsc.2023.3326539
摘要

As an essential resource management problem in network virtualization, virtual network embedding (VNE) aims to allocate the finite resources of physical network to sequentially arriving virtual network requests (VNRs) with different resource demands. Since this is an NP-hard combinatorial optimization problem, many efforts have been made to provide viable solutions. However, most existing approaches have either ignored the admission control of VNRs, which has a potential impact on long-term performances, or not fully exploited the temporal and topological features of the physical network and VNRs. In this paper, we propose a deep H ierarchical R einforcement L earning approach to learn a joint A dmission C ontrol and R esource A llocation policy for VNE, named HRL-ACRA. Specifically, the whole VNE process is decomposed into an upper-level policy for deciding whether to admit the arriving VNR or not and a lower-level policy for allocating resources of the physical network to meet the requirement of VNR through the HRL approach. Considering the proximal policy optimization as the basic training algorithm, we also adopt the average reward method to address the infinite horizon problem of the upper-level agent and design a customized multi-objective intrinsic reward to alleviate the sparse reward issue of the lower-level agent. Moreover, we develop a deep feature-aware graph neural network to capture the features of VNR and physical network and exploit a sequence-to-sequence model to generate embedding actions iteratively. Finally, extensive experiments are conducted in various settings, and show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue. Our code is available at https://github.com/GeminiLight/hrl-acra .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
110o发布了新的文献求助30
1秒前
Doctor_Mill完成签到,获得积分10
1秒前
雨天慢行完成签到 ,获得积分10
3秒前
4秒前
彪行天下发布了新的文献求助10
4秒前
小蘑菇应助小飞机采纳,获得10
6秒前
bin_yao完成签到,获得积分10
6秒前
JohnsonTse发布了新的文献求助10
7秒前
Ren应助Dr_Zhao采纳,获得10
8秒前
小二郎应助Dr_Zhao采纳,获得10
8秒前
8秒前
Tyranny完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
11秒前
13秒前
13秒前
13秒前
Ava应助路口采纳,获得10
13秒前
ztt发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
15秒前
15秒前
正直的文涛完成签到,获得积分10
15秒前
16秒前
16秒前
西子阳发布了新的文献求助10
16秒前
16秒前
17秒前
不个完成签到 ,获得积分10
17秒前
西子阳发布了新的文献求助10
18秒前
西子阳发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070