Joint Admission Control and Resource Allocation of Virtual Network Embedding Via Hierarchical Deep Reinforcement Learning

计算机科学 嵌入 网络拓扑 人工智能 网络虚拟化 资源(消歧) 虚拟化 计算机网络 操作系统 云计算
作者
Tianfu Wang,Li Shen,Qilin Fan,Tong Xu,Tongliang Liu,Hui Xiong
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/tsc.2023.3326539
摘要

As an essential resource management problem in network virtualization, virtual network embedding (VNE) aims to allocate the finite resources of physical network to sequentially arriving virtual network requests (VNRs) with different resource demands. Since this is an NP-hard combinatorial optimization problem, many efforts have been made to provide viable solutions. However, most existing approaches have either ignored the admission control of VNRs, which has a potential impact on long-term performances, or not fully exploited the temporal and topological features of the physical network and VNRs. In this paper, we propose a deep H ierarchical R einforcement L earning approach to learn a joint A dmission C ontrol and R esource A llocation policy for VNE, named HRL-ACRA. Specifically, the whole VNE process is decomposed into an upper-level policy for deciding whether to admit the arriving VNR or not and a lower-level policy for allocating resources of the physical network to meet the requirement of VNR through the HRL approach. Considering the proximal policy optimization as the basic training algorithm, we also adopt the average reward method to address the infinite horizon problem of the upper-level agent and design a customized multi-objective intrinsic reward to alleviate the sparse reward issue of the lower-level agent. Moreover, we develop a deep feature-aware graph neural network to capture the features of VNR and physical network and exploit a sequence-to-sequence model to generate embedding actions iteratively. Finally, extensive experiments are conducted in various settings, and show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue. Our code is available at https://github.com/GeminiLight/hrl-acra .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
谷策完成签到,获得积分10
3秒前
忧郁凌波发布了新的文献求助10
3秒前
明天过后完成签到,获得积分10
3秒前
战善完成签到,获得积分10
4秒前
4秒前
杨e关注了科研通微信公众号
5秒前
所所应助cbbb采纳,获得10
5秒前
天天快乐应助Sunshine采纳,获得10
5秒前
5秒前
FashionBoy应助seven采纳,获得10
6秒前
谷策发布了新的文献求助10
6秒前
Jasper应助Nancy采纳,获得10
6秒前
科目三应助小犬采纳,获得10
6秒前
Fiona发布了新的文献求助10
6秒前
酸奶球完成签到 ,获得积分10
8秒前
科研小白鼠关注了科研通微信公众号
8秒前
情怀应助科研通管家采纳,获得10
8秒前
大模型应助Yv采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
小白发布了新的文献求助20
9秒前
cc发布了新的文献求助10
10秒前
10秒前
研友_LB3vXn完成签到,获得积分20
11秒前
FashionBoy应助风中天奇采纳,获得10
11秒前
wj完成签到,获得积分10
12秒前
如果多年后完成签到 ,获得积分10
12秒前
段段完成签到,获得积分10
14秒前
liyang发布了新的文献求助10
15秒前
15秒前
汉堡包应助百里瓶窑采纳,获得10
16秒前
CodeCraft应助cc采纳,获得10
16秒前
liuxl完成签到,获得积分10
18秒前
cbbb发布了新的文献求助10
18秒前
无限毛豆完成签到 ,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655