自旋电子学
磁化
铁磁性
凝聚态物理
反铁磁性
多铁性
材料科学
可解释性
磁性半导体
机器学习
磁矩
居里温度
铁电性
人工智能
计算机科学
物理
光电子学
磁场
量子力学
电介质
作者
Bingqian Song,Zhen Fan,Guangyong Jin,Yongli Song,Feng Pan,Chao Xin
出处
期刊:Research Square - Research Square
日期:2023-08-11
标识
DOI:10.21203/rs.3.rs-2868040/v1
摘要
Abstract Two-dimensional ferromagnetic (2DFM) semiconductors (metals, half-metals, and so on) are important materials for next-generation nano-electronic and nano-spintronic devices. However, these kinds of materials remain scarce, and “trial and error” experiments and calculations are time-consuming and expensive. In the present work, to obtain optimal 2DFM materials with strong magnetization, we established a machine learning (ML) framework to search the 2D material space containing over 2417 samples, and identified 615 compounds whose magnetic orders was then determined via high-through-put first-principles calculations. Using ML algorithms, we trained two classification models and a regression model. The interpretability of the regression model was evaluated through SHAP value analysis. Unexpectedly, we found that Cr 2 NF 2 is a potential antiferromagnetic ferroelectric 2D multiferroic material. More importantly, 60 novel 2DFM candidates were predicted, and among them, 13 candidates have magnetic moments of > 7 µ B . Os 2 Cl 8 , Fe 3 GeSe 2 , and Mn 4 N 3 S 2 were predicted to be novel 2DFM semiconductors, metals, and half-metals, respectively. Our ML approach can accelerate the prediction of 2DFM materials with strong magnetization and reduce the computation time by more than one order of magnitude.
科研通智能强力驱动
Strongly Powered by AbleSci AI