过硫酸盐
化学
单线态氧
污染物
激进的
猝灭(荧光)
活性炭
光化学
钴
环境化学
催化作用
无机化学
氧气
有机化学
吸附
荧光
物理
量子力学
作者
Huijiao Wang,Lingwei Gao,Yuxin Xie,Gang Yu,Yujue Wang
出处
期刊:Water Research
[Elsevier]
日期:2023-08-11
卷期号:244: 120480-120480
被引量:48
标识
DOI:10.1016/j.watres.2023.120480
摘要
Singlet oxygen (1O2) has often been identified by the popularly used quenching method as a more important reactive species (RS) than sulfate radicals (SO4•-) and hydroxyl radicals (•OH) for pollutant abatement during persulfate-based advanced oxidation processes (PS-AOPs), especially those activated by carbon-based catalysts. However, latest studies have demonstrated that the quenching method actually can often mislead the interpretations of the role of RS for pollutant abatement during AOPs due to various confounding effects caused by adding high-concentration quenchers in the system. To clarify the role of 1O2 in PS-AOPs, this study developed a probe compound-based experimental and kinetic model to quantify the concentrations and exposures of 1O2, SO4•-, and •OH, as well as their relative contributions to pollutant abatement during a cobalt oxide incorporated carbon nanotubes activated peroxymonosulfate (Co3O4@CNTs/PMS) process. Results show that during the Co3O4@CNTs/PMS process, the exposures and transient concentrations of 1O2 were about 19.6 and 41.3 times higher than those of SO4•- and •OH, respectively. However, the relative contribution of 1O2 to the abatement of most pollutants tested in this study (e.g., sulfisoxazole, sulfamethoxyprazine, trimethoprim, and metoprolol) is generally negligible (f1O2 ≤ 8%) compared to that of SO4•- and •OH ( [Formula: see text] = 15%-98% and f•OH = 2%-78%) because of the significantly lower reactivity of 1O2 with these compounds than that of SO4•- and •OH. Reasons for misidentifying 1O2 as the dominant RS for pollutant abatement by the quenching method were then analyzed based on reaction kinetics principles. The results of this study highlight that while 1O2 can be generated in significant amounts and be present at higher concentrations than SO4•- and •OH in PS-AOP systems, 1O2 is unlikely to be the dominant RS for the abatement of most pollutants during the PS-AOPs because of its weak and selective oxidation capacity, and caution should be taken when using the quenching method to evaluate the role of RS for pollutant abatement by the PS-AOPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI