清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

GENA: A knowledge graph for nutrition and mental health

计算机科学 结构化 编码 图形 情报检索 关系抽取 二元关系 任务(项目管理) 知识图 人工智能 自然语言处理 数据科学 信息抽取 理论计算机科学 数学 生物化学 化学 管理 财务 离散数学 经济 基因
作者
Linh D. Dang,Thi-Phuong-Uyen PHAN,Nhung T. H. Nguyen
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:145: 104460-104460 被引量:12
标识
DOI:10.1016/j.jbi.2023.104460
摘要

While a large number of knowledge graphs have previously been developed by automatically extracting and structuring knowledge from literature, there is currently no such knowledge graph that encodes relationships between food, biochemicals and mental illnesses, even though a large amount of knowledge about these relationships is available in the form of unstructured text in biomedical literature articles. To address this limitation, this article describes the development of GENA - (Graph of mEntal-health and Nutrition Association), a knowledge graph that represents relations between nutrition and mental health, extracted from biomedical abstracts. GENA is constructed from PubMed abstracts that contain keywords relating to chemicals, food, and health. A hybrid named entity recognition (NER) model is firstly applied to these abstracts to identify various entities of interest. Subsequently, a deep syntax-based relation extraction model is used to detect binary relations between the identified entities. Finally, the resulting relations are used to populate the GENA knowledge graph, whose relationships can be accessed in an intuitive and interpretable manner using the Neo4J Database Management System. To evaluate the reliability of GENA, two annotators manually assessed a subset of the extracted relations. The evaluation results show that our methods obtain high precision for the NER task and acceptable precision and relative recall for the relation extraction task. GENA consists of 43,367 relationships that encode information about nutrition and health, of which 94.04% are new relations that are not present in existing ontologies of food and diseases. GENA is constructed based on scientific principles, and has the potential to be used within further applications to contribute towards scientific research within the domain. It is a pioneering knowledge graph in nutrition and mental health, containing a diverse range of relationship types. All of our source code and results are publicly available at https://github.com/ddlinh/gena-db.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
锦慜完成签到 ,获得积分10
6秒前
Criminology34应助kyyp采纳,获得10
12秒前
20秒前
wodetaiyangLLL完成签到 ,获得积分10
27秒前
32秒前
Criminology34举报adong求助涉嫌违规
38秒前
52秒前
54秒前
juan完成签到 ,获得积分0
55秒前
56秒前
1250241652发布了新的文献求助10
58秒前
1分钟前
两个榴莲完成签到,获得积分0
2分钟前
小奋青完成签到 ,获得积分10
3分钟前
3分钟前
MathFun发布了新的文献求助10
3分钟前
3分钟前
研友_ngqoE8完成签到,获得积分10
4分钟前
4分钟前
4分钟前
lyq007完成签到,获得积分10
4分钟前
TYG完成签到 ,获得积分10
4分钟前
嗷呜完成签到,获得积分10
4分钟前
龚文亮完成签到,获得积分10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
5分钟前
激动的似狮完成签到,获得积分10
5分钟前
zhouti497541171完成签到,获得积分10
6分钟前
苒苒完成签到,获得积分10
6分钟前
白天亮完成签到,获得积分10
6分钟前
tt完成签到,获得积分10
6分钟前
浮游应助萨尔莫斯采纳,获得10
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
浮游应助萨尔莫斯采纳,获得10
7分钟前
老迟到的友桃完成签到 ,获得积分10
7分钟前
萨尔莫斯完成签到,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
Regulusyang完成签到,获得积分10
7分钟前
Benhnhk21完成签到,获得积分10
9分钟前
GPTea完成签到,获得积分0
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324554
求助须知:如何正确求助?哪些是违规求助? 4465370
关于积分的说明 13894437
捐赠科研通 4357382
什么是DOI,文献DOI怎么找? 2393359
邀请新用户注册赠送积分活动 1386852
关于科研通互助平台的介绍 1357355