GENA: A knowledge graph for nutrition and mental health

计算机科学 结构化 编码 图形 情报检索 关系抽取 二元关系 任务(项目管理) 知识图 人工智能 自然语言处理 数据科学 信息抽取 理论计算机科学 数学 生物化学 化学 管理 财务 离散数学 经济 基因
作者
Linh D. Dang,Thi-Phuong-Uyen PHAN,Nhung T. H. Nguyen
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:145: 104460-104460 被引量:12
标识
DOI:10.1016/j.jbi.2023.104460
摘要

While a large number of knowledge graphs have previously been developed by automatically extracting and structuring knowledge from literature, there is currently no such knowledge graph that encodes relationships between food, biochemicals and mental illnesses, even though a large amount of knowledge about these relationships is available in the form of unstructured text in biomedical literature articles. To address this limitation, this article describes the development of GENA - (Graph of mEntal-health and Nutrition Association), a knowledge graph that represents relations between nutrition and mental health, extracted from biomedical abstracts. GENA is constructed from PubMed abstracts that contain keywords relating to chemicals, food, and health. A hybrid named entity recognition (NER) model is firstly applied to these abstracts to identify various entities of interest. Subsequently, a deep syntax-based relation extraction model is used to detect binary relations between the identified entities. Finally, the resulting relations are used to populate the GENA knowledge graph, whose relationships can be accessed in an intuitive and interpretable manner using the Neo4J Database Management System. To evaluate the reliability of GENA, two annotators manually assessed a subset of the extracted relations. The evaluation results show that our methods obtain high precision for the NER task and acceptable precision and relative recall for the relation extraction task. GENA consists of 43,367 relationships that encode information about nutrition and health, of which 94.04% are new relations that are not present in existing ontologies of food and diseases. GENA is constructed based on scientific principles, and has the potential to be used within further applications to contribute towards scientific research within the domain. It is a pioneering knowledge graph in nutrition and mental health, containing a diverse range of relationship types. All of our source code and results are publicly available at https://github.com/ddlinh/gena-db.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
away完成签到,获得积分10
1秒前
1秒前
1秒前
豆豆发布了新的文献求助10
2秒前
怡然的芯完成签到,获得积分10
2秒前
魏笑白完成签到 ,获得积分10
3秒前
航神完成签到,获得积分10
3秒前
lujiajia发布了新的文献求助10
3秒前
哈基米完成签到,获得积分10
4秒前
4秒前
tyl完成签到 ,获得积分10
4秒前
共享精神应助xxz采纳,获得30
5秒前
落寞寒荷完成签到,获得积分10
5秒前
烟花应助shouyu29采纳,获得10
5秒前
大模型应助魏骜琦采纳,获得10
5秒前
无共鸣发布了新的文献求助10
5秒前
炙热静白完成签到,获得积分10
5秒前
思源应助哈哈哈哈采纳,获得10
5秒前
sparks完成签到,获得积分10
5秒前
云飞扬完成签到,获得积分10
6秒前
6秒前
西西发布了新的文献求助10
6秒前
Jess发布了新的文献求助10
7秒前
浅梦星河完成签到,获得积分10
7秒前
Hello应助八音盒采纳,获得10
8秒前
qy发布了新的文献求助10
8秒前
李健的小迷弟应助zllllll采纳,获得20
8秒前
soumei完成签到 ,获得积分10
8秒前
那么美丽而帅气完成签到,获得积分10
9秒前
炙热静白发布了新的文献求助10
9秒前
大鹏完成签到,获得积分10
9秒前
tdtk发布了新的文献求助10
10秒前
10秒前
英俊的铭应助away采纳,获得10
10秒前
庞贝完成签到,获得积分10
10秒前
10秒前
11秒前
所所应助食分子采纳,获得10
11秒前
隐形曼青应助_ban采纳,获得10
11秒前
mojito应助666采纳,获得10
11秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337533
求助须知:如何正确求助?哪些是违规求助? 4474745
关于积分的说明 13925710
捐赠科研通 4369749
什么是DOI,文献DOI怎么找? 2400934
邀请新用户注册赠送积分活动 1394041
关于科研通互助平台的介绍 1365885