GENA: A knowledge graph for nutrition and mental health

计算机科学 结构化 编码 图形 情报检索 关系抽取 二元关系 任务(项目管理) 知识图 人工智能 自然语言处理 数据科学 信息抽取 理论计算机科学 数学 生物化学 化学 管理 财务 离散数学 经济 基因
作者
Linh D. Dang,Thi-Phuong-Uyen PHAN,Nhung T. H. Nguyen
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:145: 104460-104460 被引量:12
标识
DOI:10.1016/j.jbi.2023.104460
摘要

While a large number of knowledge graphs have previously been developed by automatically extracting and structuring knowledge from literature, there is currently no such knowledge graph that encodes relationships between food, biochemicals and mental illnesses, even though a large amount of knowledge about these relationships is available in the form of unstructured text in biomedical literature articles. To address this limitation, this article describes the development of GENA - (Graph of mEntal-health and Nutrition Association), a knowledge graph that represents relations between nutrition and mental health, extracted from biomedical abstracts. GENA is constructed from PubMed abstracts that contain keywords relating to chemicals, food, and health. A hybrid named entity recognition (NER) model is firstly applied to these abstracts to identify various entities of interest. Subsequently, a deep syntax-based relation extraction model is used to detect binary relations between the identified entities. Finally, the resulting relations are used to populate the GENA knowledge graph, whose relationships can be accessed in an intuitive and interpretable manner using the Neo4J Database Management System. To evaluate the reliability of GENA, two annotators manually assessed a subset of the extracted relations. The evaluation results show that our methods obtain high precision for the NER task and acceptable precision and relative recall for the relation extraction task. GENA consists of 43,367 relationships that encode information about nutrition and health, of which 94.04% are new relations that are not present in existing ontologies of food and diseases. GENA is constructed based on scientific principles, and has the potential to be used within further applications to contribute towards scientific research within the domain. It is a pioneering knowledge graph in nutrition and mental health, containing a diverse range of relationship types. All of our source code and results are publicly available at https://github.com/ddlinh/gena-db.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
adw发布了新的文献求助10
3秒前
安安完成签到 ,获得积分10
4秒前
5秒前
7秒前
SigRosa发布了新的文献求助10
12秒前
Anna完成签到,获得积分10
16秒前
yangkunmedical完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
adw完成签到,获得积分10
21秒前
21秒前
Ekko完成签到,获得积分10
21秒前
11完成签到 ,获得积分10
22秒前
23秒前
年轻凡双给年轻凡双的求助进行了留言
26秒前
26秒前
落寞臻发布了新的文献求助20
28秒前
百花完成签到,获得积分10
30秒前
我是废物完成签到,获得积分10
31秒前
8R60d8应助wuludie采纳,获得10
32秒前
科研小白菜完成签到,获得积分10
32秒前
33秒前
在水一方应助奋斗金连采纳,获得10
36秒前
36秒前
40秒前
小二郎应助彪壮的依风采纳,获得10
41秒前
42秒前
LaTeXer应助zachary采纳,获得40
42秒前
田様应助简单雁蓉采纳,获得10
43秒前
积极的绫完成签到 ,获得积分10
43秒前
云中应助落寞臻采纳,获得20
43秒前
英姑应助落寞臻采纳,获得10
44秒前
wuludie完成签到,获得积分0
48秒前
奋斗金连发布了新的文献求助10
48秒前
51秒前
51秒前
SY完成签到,获得积分10
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958114
求助须知:如何正确求助?哪些是违规求助? 3504298
关于积分的说明 11117743
捐赠科研通 3235614
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547