GENA: A knowledge graph for nutrition and mental health

计算机科学 结构化 编码 图形 情报检索 关系抽取 二元关系 任务(项目管理) 知识图 人工智能 自然语言处理 数据科学 信息抽取 理论计算机科学 数学 生物化学 化学 管理 财务 离散数学 经济 基因
作者
Linh D. Dang,Thi-Phuong-Uyen PHAN,Nhung T. H. Nguyen
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:145: 104460-104460 被引量:12
标识
DOI:10.1016/j.jbi.2023.104460
摘要

While a large number of knowledge graphs have previously been developed by automatically extracting and structuring knowledge from literature, there is currently no such knowledge graph that encodes relationships between food, biochemicals and mental illnesses, even though a large amount of knowledge about these relationships is available in the form of unstructured text in biomedical literature articles. To address this limitation, this article describes the development of GENA - (Graph of mEntal-health and Nutrition Association), a knowledge graph that represents relations between nutrition and mental health, extracted from biomedical abstracts. GENA is constructed from PubMed abstracts that contain keywords relating to chemicals, food, and health. A hybrid named entity recognition (NER) model is firstly applied to these abstracts to identify various entities of interest. Subsequently, a deep syntax-based relation extraction model is used to detect binary relations between the identified entities. Finally, the resulting relations are used to populate the GENA knowledge graph, whose relationships can be accessed in an intuitive and interpretable manner using the Neo4J Database Management System. To evaluate the reliability of GENA, two annotators manually assessed a subset of the extracted relations. The evaluation results show that our methods obtain high precision for the NER task and acceptable precision and relative recall for the relation extraction task. GENA consists of 43,367 relationships that encode information about nutrition and health, of which 94.04% are new relations that are not present in existing ontologies of food and diseases. GENA is constructed based on scientific principles, and has the potential to be used within further applications to contribute towards scientific research within the domain. It is a pioneering knowledge graph in nutrition and mental health, containing a diverse range of relationship types. All of our source code and results are publicly available at https://github.com/ddlinh/gena-db.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助小梁要加油采纳,获得10
3秒前
3秒前
4秒前
changping应助科研通管家采纳,获得150
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
changping应助科研通管家采纳,获得150
4秒前
科研通AI6应助科研通管家采纳,获得150
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得150
4秒前
传奇3应助科研通管家采纳,获得30
5秒前
changping应助科研通管家采纳,获得150
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
changping应助科研通管家采纳,获得150
5秒前
彭于晏应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得150
5秒前
Akim应助科研通管家采纳,获得10
5秒前
changping应助科研通管家采纳,获得150
5秒前
浮游应助科研通管家采纳,获得10
5秒前
VDC应助科研通管家采纳,获得30
5秒前
彭于晏应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得30
5秒前
sun完成签到,获得积分10
6秒前
mm发布了新的文献求助10
7秒前
李佳欣发布了新的文献求助10
7秒前
科研通AI2S应助某某采纳,获得10
8秒前
刘永红发布了新的文献求助10
9秒前
温期涵发布了新的文献求助10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135125
求助须知:如何正确求助?哪些是违规求助? 4335681
关于积分的说明 13507506
捐赠科研通 4173285
什么是DOI,文献DOI怎么找? 2288314
邀请新用户注册赠送积分活动 1289041
关于科研通互助平台的介绍 1230093