亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GENA: A knowledge graph for nutrition and mental health

计算机科学 结构化 编码 图形 情报检索 关系抽取 二元关系 任务(项目管理) 知识图 人工智能 自然语言处理 数据科学 信息抽取 理论计算机科学 数学 生物化学 化学 管理 财务 离散数学 经济 基因
作者
Linh D. Dang,Thi-Phuong-Uyen PHAN,Nhung T. H. Nguyen
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:145: 104460-104460 被引量:12
标识
DOI:10.1016/j.jbi.2023.104460
摘要

While a large number of knowledge graphs have previously been developed by automatically extracting and structuring knowledge from literature, there is currently no such knowledge graph that encodes relationships between food, biochemicals and mental illnesses, even though a large amount of knowledge about these relationships is available in the form of unstructured text in biomedical literature articles. To address this limitation, this article describes the development of GENA - (Graph of mEntal-health and Nutrition Association), a knowledge graph that represents relations between nutrition and mental health, extracted from biomedical abstracts. GENA is constructed from PubMed abstracts that contain keywords relating to chemicals, food, and health. A hybrid named entity recognition (NER) model is firstly applied to these abstracts to identify various entities of interest. Subsequently, a deep syntax-based relation extraction model is used to detect binary relations between the identified entities. Finally, the resulting relations are used to populate the GENA knowledge graph, whose relationships can be accessed in an intuitive and interpretable manner using the Neo4J Database Management System. To evaluate the reliability of GENA, two annotators manually assessed a subset of the extracted relations. The evaluation results show that our methods obtain high precision for the NER task and acceptable precision and relative recall for the relation extraction task. GENA consists of 43,367 relationships that encode information about nutrition and health, of which 94.04% are new relations that are not present in existing ontologies of food and diseases. GENA is constructed based on scientific principles, and has the potential to be used within further applications to contribute towards scientific research within the domain. It is a pioneering knowledge graph in nutrition and mental health, containing a diverse range of relationship types. All of our source code and results are publicly available at https://github.com/ddlinh/gena-db.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
肃肃其羽完成签到 ,获得积分10
25秒前
一二三四完成签到,获得积分10
52秒前
Mona给Mona的求助进行了留言
1分钟前
orixero应助GIM采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得20
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
Forizix完成签到,获得积分10
1分钟前
Forizix发布了新的文献求助10
1分钟前
lilink完成签到,获得积分10
1分钟前
Bingtao_Lian完成签到 ,获得积分10
2分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
3分钟前
常有李完成签到,获得积分10
3分钟前
DocChen发布了新的文献求助10
3分钟前
科研通AI2S应助DocChen采纳,获得10
3分钟前
ghx完成签到,获得积分10
4分钟前
西升东落完成签到 ,获得积分10
4分钟前
4分钟前
绚濑绘里家的东条希完成签到,获得积分20
5分钟前
深情安青应助科研通管家采纳,获得10
5分钟前
5分钟前
只如初完成签到 ,获得积分10
5分钟前
寒冷的如之完成签到 ,获得积分10
6分钟前
6分钟前
浮游应助科研通管家采纳,获得10
7分钟前
Dirsch应助科研通管家采纳,获得10
7分钟前
7分钟前
有人发布了新的文献求助200
7分钟前
曾经白亦完成签到 ,获得积分10
7分钟前
fufufu123完成签到 ,获得积分10
8分钟前
周周完成签到 ,获得积分10
9分钟前
予秋完成签到,获得积分10
9分钟前
予秋发布了新的文献求助10
9分钟前
故意不上钩的鱼应助予秋采纳,获得10
10分钟前
执着的蜗牛应助予秋采纳,获得10
10分钟前
dynamoo应助予秋采纳,获得10
10分钟前
共享精神应助科研通管家采纳,获得20
11分钟前
Dirsch应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292824
求助须知:如何正确求助?哪些是违规求助? 4443199
关于积分的说明 13830986
捐赠科研通 4326677
什么是DOI,文献DOI怎么找? 2375029
邀请新用户注册赠送积分活动 1370366
关于科研通互助平台的介绍 1334922