作者
Dong Yang,Zhi‐Dong Jiang,Qiuyu Meng,Shengkang Wang,Hanxu Pan,Lei Rao,Xiaojun Liao
摘要
This study aimed to analyze and reduce the pressure resistance (PR), sublethal injury (SLI), and viable but non-culturable (VBNC) populations during HPP. Escherichia coli, Staphylococcus aureus, Bacillus amyloliquefaciens and Lactiplantibacillus plantarum were selected for evaluation of PR, SLI and VBNC cell counts and proportions during HPP. The results revealed that the bactericidal efficiency against these strains gradually improved as the processing pressure increased. However, viable bacteria could still be detected, suggesting that there may involve the presence of resistant population that difficult to be killed or revived from SLI. Further detecting the quantity and proportion of PR, SLI and VBNC bacteria found that these state of cells were present during whole HPP treatment. Additionally, the more resistant a bacterial species was to high pressure, the fewer SLI and more resuscitable VBNC (RVBNC) populations it generated, and vice versa. Therefore, correlation analysis was also employed to make the relationship between log reduction, SLI and RVBNC population ratios clearer. The results demonstrated that the log reduction was highly positive correlation with SLI population ratios, and negative correlation with RVBNC population within our detected species at 500 MPa. Furthermore, CO2 and Nisin were employed to combined with HPP to reduce these survivors. Comparing with 233, 218, 241 and 259 MPa for HPP treatment, it took 37, 89, 135 and 229 MPa for HPP + CO2, and 189, 161, 199 and 292 MPa for HPP + Nisin to the first decimal reduction for E. coli, S.aureus, B. amyloliquefaciens and L. plantarum, respectively. The results indicated that HPP combined with CO2 or Nisin could significantly reduce the quantity of PR, SLI, and RVBNC cells during HPP, and provide better bactericidal effects. In conclusion, we quantified the presence of PR, SLI, and VBNC bacteria after high pressure treatment and investigate the effectiveness of HPP combined with CO2 or Nisin to enhance the inactivation of bacteria and reduce the occurrence of PR, SLI, and RVBNC bacteria.