A mathematical framework for improved weight initialization of neural networks using Lagrange multipliers

初始化 水准点(测量) 计算机科学 趋同(经济学) 人工神经网络 拉格朗日乘数 数学优化 算法 人工智能 数学 大地测量学 经济增长 经济 程序设计语言 地理
作者
Ingeborg de Pater,Mihaela Mitici
出处
期刊:Neural Networks [Elsevier BV]
卷期号:166: 579-594 被引量:2
标识
DOI:10.1016/j.neunet.2023.07.035
摘要

A good weight initialization is crucial to accelerate the convergence of the weights in a neural network. However, training a neural network is still time-consuming, despite recent advances in weight initialization approaches. In this paper, we propose a mathematical framework for the weight initialization in the last layer of a neural network. We first derive analytically a tight constraint on the weights that accelerates the convergence of the weights during the back-propagation algorithm. We then use linear regression and Lagrange multipliers to analytically derive the optimal initial weights and initial bias of the last layer, that minimize the initial training loss given the derived tight constraint. We also show that the restrictive assumption of traditional weight initialization algorithms that the expected value of the weights is zero is redundant for our approach. We first apply our proposed weight initialization approach to a Convolutional Neural Network that predicts the Remaining Useful Life of aircraft engines. The initial training and validation loss are relatively small, the weights do not get stuck in a local optimum, and the convergence of the weights is accelerated. We compare our approach with several benchmark strategies. Compared to the best performing state-of-the-art initialization strategy (Kaiming initialization), our approach needs 34% less epochs to reach the same validation loss. We also apply our approach to ResNets for the CIFAR-100 dataset, combined with transfer learning. Here, the initial accuracy is already at least 53%. This gives a faster weight convergence and a higher test accuracy than the benchmark strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小明完成签到,获得积分10
刚刚
小酸奶完成签到,获得积分10
刚刚
唠叨的若冰完成签到,获得积分10
1秒前
duoduo完成签到,获得积分10
1秒前
1秒前
2秒前
全一斩完成签到,获得积分10
2秒前
2秒前
和谐成协完成签到,获得积分10
3秒前
冰魂应助阿慧采纳,获得10
4秒前
飘文献完成签到,获得积分10
4秒前
羞涩的盼山完成签到 ,获得积分10
5秒前
灰灰发布了新的文献求助10
7秒前
QinQin发布了新的文献求助30
7秒前
7秒前
独特的豌豆完成签到,获得积分10
7秒前
MH完成签到,获得积分10
7秒前
小墨鱼完成签到,获得积分10
8秒前
8秒前
成就的沛菡完成签到,获得积分10
9秒前
10秒前
11秒前
害羞天荷完成签到,获得积分10
11秒前
怕孤单的安蕾完成签到,获得积分10
11秒前
zhouxuefeng完成签到,获得积分10
13秒前
Jane发布了新的文献求助10
13秒前
桐桐应助Sea_U采纳,获得10
13秒前
cc完成签到,获得积分10
14秒前
ironsilica完成签到,获得积分10
15秒前
16秒前
16秒前
Frank发布了新的文献求助10
16秒前
junzheng完成签到,获得积分10
16秒前
顺其自然完成签到 ,获得积分10
17秒前
18秒前
Akim应助......采纳,获得10
18秒前
烟花应助冷傲迎梦采纳,获得10
18秒前
朴实初夏完成签到 ,获得积分10
19秒前
plant完成签到 ,获得积分10
20秒前
打打应助TOF采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773778
求助须知:如何正确求助?哪些是违规求助? 3319358
关于积分的说明 10194460
捐赠科研通 3033996
什么是DOI,文献DOI怎么找? 1664864
邀请新用户注册赠送积分活动 796374
科研通“疑难数据库(出版商)”最低求助积分说明 757433