Fast Hyperspectral Image Classification Combining Transformers and SimAM-Based CNNs

计算机科学 高光谱成像 模式识别(心理学) 人工智能 判别式 卷积神经网络 特征提取 像素 水准点(测量) 上下文图像分类 图像(数学) 大地测量学 地理
作者
Lianhui Liang,Ying Zhang,Shaoquan Zhang,Jun Li,Antonio Plaza,Xudong Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:30
标识
DOI:10.1109/tgrs.2023.3309245
摘要

Convolutional neural networks (CNNs) have been widely employed for hyperspectral image (HSI) classification due to their powerful ability to extract local spatial features. However, CNN-based methods cannot establish long-range dependencies among sequences of pixels. Transformers offer significant advantages when processing sequential data and can establish global relationships, but they still encounter a number of challenges, such as their limited spatial feature extraction ability, or their high computational cost. In order to address the aforementioned issues, we develop a new fast HSI classification approach combining transformers and SimAM-based CNNs. The latter are utilized to extract better spatial features, where the complex spatial characteristics of HSIs are retrieved using an improved hierarchical 2D dense network structure. A dual attention unit (DAU) mechanism is then utilized to direct the model's attention to discriminative spatial pixel characteristics and effective feature map channels, while suppressing information that is irrelevant for classification purposes. Regarding the spectral features, after extracting hierarchical local characteristics from various convolutional layers (using the hierarchical dense network structure), a squeezed-enhanced axial transformer is employed to establish global long-range dependencies whilst enhancing the ability of the model to extract local detail features in the HSI. Besides, a new Lion optimizer is utilized to improve the classification performance of our model. Our quantitative and comparative experiments on four benchmark datasets demonstrate the effectiveness of the proposed approach provides better classification results than other state-of-the-art approaches. Moreover, our FTSCN also achieves better classification results than other methods in practical scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助buhuidanhuixue采纳,获得10
刚刚
小欢发布了新的文献求助20
1秒前
所所应助晓晓来了采纳,获得10
1秒前
liushirui发布了新的文献求助10
2秒前
完美世界应助yan采纳,获得80
2秒前
xiancdc完成签到,获得积分10
3秒前
爆米花应助健康的不愁采纳,获得10
3秒前
freya发布了新的文献求助10
3秒前
充电宝应助小白采纳,获得10
3秒前
研友_8WMxKn完成签到,获得积分10
3秒前
4秒前
4秒前
222666发布了新的文献求助10
5秒前
大个应助122采纳,获得10
5秒前
维洛尼亚发布了新的文献求助10
5秒前
yolo完成签到,获得积分10
5秒前
6秒前
初秋完成签到,获得积分20
6秒前
6秒前
李爱国应助知秋采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
烟花应助望山云雾采纳,获得10
7秒前
song发布了新的文献求助10
8秒前
CodeCraft应助研友_8WMxKn采纳,获得10
9秒前
铃溪完成签到,获得积分10
9秒前
9秒前
minbio完成签到,获得积分20
9秒前
AsRNA完成签到,获得积分10
10秒前
董媛媛发布了新的文献求助10
10秒前
10秒前
10秒前
如果再谨慎点完成签到 ,获得积分20
10秒前
huyu发布了新的文献求助10
10秒前
HOAN应助粥粥采纳,获得30
10秒前
李健应助天气晴朗采纳,获得10
11秒前
11秒前
丫丫发布了新的文献求助10
11秒前
止戈发布了新的文献求助10
11秒前
求助人员发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482