Fast Hyperspectral Image Classification Combining Transformers and SimAM-Based CNNs

计算机科学 高光谱成像 模式识别(心理学) 人工智能 判别式 卷积神经网络 特征提取 像素 水准点(测量) 上下文图像分类 图像(数学) 大地测量学 地理
作者
Lianhui Liang,Ying Zhang,Shaoquan Zhang,Jun Li,Antonio Plaza,Xudong Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:30
标识
DOI:10.1109/tgrs.2023.3309245
摘要

Convolutional neural networks (CNNs) have been widely employed for hyperspectral image (HSI) classification due to their powerful ability to extract local spatial features. However, CNN-based methods cannot establish long-range dependencies among sequences of pixels. Transformers offer significant advantages when processing sequential data and can establish global relationships, but they still encounter a number of challenges, such as their limited spatial feature extraction ability, or their high computational cost. In order to address the aforementioned issues, we develop a new fast HSI classification approach combining transformers and SimAM-based CNNs. The latter are utilized to extract better spatial features, where the complex spatial characteristics of HSIs are retrieved using an improved hierarchical 2D dense network structure. A dual attention unit (DAU) mechanism is then utilized to direct the model's attention to discriminative spatial pixel characteristics and effective feature map channels, while suppressing information that is irrelevant for classification purposes. Regarding the spectral features, after extracting hierarchical local characteristics from various convolutional layers (using the hierarchical dense network structure), a squeezed-enhanced axial transformer is employed to establish global long-range dependencies whilst enhancing the ability of the model to extract local detail features in the HSI. Besides, a new Lion optimizer is utilized to improve the classification performance of our model. Our quantitative and comparative experiments on four benchmark datasets demonstrate the effectiveness of the proposed approach provides better classification results than other state-of-the-art approaches. Moreover, our FTSCN also achieves better classification results than other methods in practical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拾壹完成签到,获得积分10
2秒前
雪花完成签到,获得积分10
4秒前
清风完成签到 ,获得积分10
4秒前
雪花发布了新的文献求助10
8秒前
秀丽笑容完成签到 ,获得积分10
12秒前
江湖应助聪慧芷巧采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
Rjy完成签到 ,获得积分10
20秒前
性感母蟑螂完成签到 ,获得积分10
26秒前
ruochenzu完成签到,获得积分10
28秒前
陈尹蓝完成签到 ,获得积分10
29秒前
天道酬勤完成签到,获得积分10
31秒前
33秒前
仁爱的谷南完成签到,获得积分10
33秒前
雯雯完成签到 ,获得积分10
35秒前
一路有你完成签到 ,获得积分10
35秒前
36秒前
ruochenzu发布了新的文献求助10
36秒前
38秒前
wanghao完成签到 ,获得积分10
39秒前
图图发布了新的文献求助10
39秒前
十三完成签到 ,获得积分10
39秒前
聪慧芷巧完成签到,获得积分10
40秒前
米博士完成签到,获得积分10
41秒前
研友_VZGVzn完成签到,获得积分10
42秒前
Cheung2121发布了新的文献求助30
43秒前
黄芩完成签到 ,获得积分10
44秒前
1分钟前
秋半梦完成签到,获得积分10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
彩色半烟完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Ning完成签到,获得积分10
1分钟前
图图完成签到,获得积分10
1分钟前
勤奋的灯完成签到 ,获得积分10
1分钟前
ludong_0完成签到,获得积分10
1分钟前
Asumita完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022