Fast Hyperspectral Image Classification Combining Transformers and SimAM-Based CNNs

计算机科学 高光谱成像 模式识别(心理学) 人工智能 判别式 卷积神经网络 特征提取 像素 水准点(测量) 上下文图像分类 变压器 图像(数学) 大地测量学 地理 物理 量子力学 电压
作者
Lianhui Liang,Ying Zhang,Shaoquan Zhang,Liangpei Zhang,Antonio Plaza,Xudong Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:7
标识
DOI:10.1109/tgrs.2023.3309245
摘要

Convolutional neural networks (CNNs) have been widely employed for hyperspectral image (HSI) classification due to their powerful ability to extract local spatial features. However, CNN-based methods cannot establish long-range dependencies among sequences of pixels. Transformers offer significant advantages when processing sequential data and can establish global relationships, but they still encounter a number of challenges, such as their limited spatial feature extraction ability, or their high computational cost. In order to address the aforementioned issues, we develop a new fast HSI classification approach combining transformers and SimAM-based CNNs. The latter are utilized to extract better spatial features, where the complex spatial characteristics of HSIs are retrieved using an improved hierarchical 2D dense network structure. A dual attention unit (DAU) mechanism is then utilized to direct the model’s attention to discriminative spatial pixel characteristics and effective feature map channels, while suppressing information that is irrelevant for classification purposes. Regarding the spectral features, after extracting hierarchical local characteristics from various convolutional layers (using the hierarchical dense network structure), a squeezed-enhanced axial transformer is employed to establish global long-range dependencies whilst enhancing the ability of the model to extract local detail features in the HSI. Besides, a new Lion optimizer is utilized to improve the classification performance of our model. Our quantitative and comparative experiments on four benchmark datasets demonstrate the effectiveness of the proposed approach provides better classification results than other state-of-the-art approaches. Moreover, our FTSCN also achieves better classification results than other methods in practical scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
gnr2000完成签到,获得积分0
刚刚
1秒前
1秒前
BareBear应助赖道之采纳,获得10
1秒前
LEMON完成签到,获得积分10
1秒前
Ava应助buuyoo采纳,获得10
2秒前
情怀应助liuwei采纳,获得10
2秒前
aaefv完成签到,获得积分10
2秒前
小小菜鸟发布了新的文献求助10
2秒前
深情安青应助123采纳,获得10
2秒前
赫初晴完成签到 ,获得积分10
2秒前
平淡的亦丝应助明研采纳,获得20
2秒前
4秒前
库外发布了新的文献求助10
5秒前
汉堡包应助清新的冷松采纳,获得10
5秒前
从心应助LiShin采纳,获得10
5秒前
帅气的听莲完成签到,获得积分10
5秒前
英姑应助Areslcy采纳,获得10
5秒前
善学以致用应助zxz采纳,获得10
6秒前
whatever应助luoshi采纳,获得10
7秒前
7秒前
科研通AI5应助徐徐采纳,获得10
8秒前
shouyu29应助MADKAI采纳,获得10
8秒前
shouyu29应助MADKAI采纳,获得10
8秒前
Lucas应助MADKAI采纳,获得10
8秒前
Vii应助MADKAI采纳,获得10
8秒前
李爱国应助MADKAI采纳,获得10
8秒前
李健应助MADKAI采纳,获得10
8秒前
烟花应助MADKAI采纳,获得20
8秒前
香蕉觅云应助MADKAI采纳,获得10
8秒前
科研通AI2S应助MADKAI采纳,获得10
8秒前
Singularity应助MADKAI采纳,获得10
8秒前
9秒前
9秒前
赘婿应助GGZ采纳,获得10
9秒前
阿盛完成签到,获得积分10
9秒前
9秒前
怕孤单的含羞草完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762