Fast Hyperspectral Image Classification Combining Transformers and SimAM-Based CNNs

计算机科学 高光谱成像 模式识别(心理学) 人工智能 判别式 卷积神经网络 特征提取 像素 水准点(测量) 上下文图像分类 图像(数学) 大地测量学 地理
作者
Lianhui Liang,Ying Zhang,Shaoquan Zhang,Jun Li,Antonio Plaza,Xudong Kang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-19 被引量:30
标识
DOI:10.1109/tgrs.2023.3309245
摘要

Convolutional neural networks (CNNs) have been widely employed for hyperspectral image (HSI) classification due to their powerful ability to extract local spatial features. However, CNN-based methods cannot establish long-range dependencies among sequences of pixels. Transformers offer significant advantages when processing sequential data and can establish global relationships, but they still encounter a number of challenges, such as their limited spatial feature extraction ability, or their high computational cost. In order to address the aforementioned issues, we develop a new fast HSI classification approach combining transformers and SimAM-based CNNs. The latter are utilized to extract better spatial features, where the complex spatial characteristics of HSIs are retrieved using an improved hierarchical 2D dense network structure. A dual attention unit (DAU) mechanism is then utilized to direct the model's attention to discriminative spatial pixel characteristics and effective feature map channels, while suppressing information that is irrelevant for classification purposes. Regarding the spectral features, after extracting hierarchical local characteristics from various convolutional layers (using the hierarchical dense network structure), a squeezed-enhanced axial transformer is employed to establish global long-range dependencies whilst enhancing the ability of the model to extract local detail features in the HSI. Besides, a new Lion optimizer is utilized to improve the classification performance of our model. Our quantitative and comparative experiments on four benchmark datasets demonstrate the effectiveness of the proposed approach provides better classification results than other state-of-the-art approaches. Moreover, our FTSCN also achieves better classification results than other methods in practical scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助细心天德采纳,获得10
刚刚
出云天花发布了新的文献求助10
1秒前
1秒前
wanci应助Iridesent0v0采纳,获得10
1秒前
1秒前
ding应助8y24dp采纳,获得10
2秒前
高欣怡完成签到 ,获得积分10
2秒前
有机会有机会么完成签到,获得积分10
3秒前
3秒前
3秒前
xxfsx应助vinhvvuive采纳,获得30
3秒前
3秒前
罗是一完成签到,获得积分10
3秒前
皛鱼完成签到,获得积分10
3秒前
斯文败类应助沈樾采纳,获得10
3秒前
三七完成签到,获得积分10
4秒前
传统的数据线完成签到,获得积分10
4秒前
大胆的皮卡丘完成签到,获得积分10
4秒前
he发布了新的文献求助10
5秒前
5秒前
Mark完成签到,获得积分20
5秒前
西柚完成签到,获得积分10
5秒前
无忧诀完成签到,获得积分10
5秒前
小鹿斑比发布了新的文献求助10
5秒前
6秒前
韵寒发布了新的文献求助10
6秒前
6秒前
lyh发布了新的文献求助10
6秒前
SciGPT应助kaka7采纳,获得10
6秒前
7秒前
刘天义完成签到,获得积分10
7秒前
SCO发布了新的文献求助10
7秒前
隐形曼青应助饼饼采纳,获得10
7秒前
Lq应助行行行采纳,获得30
7秒前
8秒前
YAN应助玩命的囧采纳,获得10
8秒前
汉堡包应助尽落采纳,获得10
8秒前
汉堡包应助cancan采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512726
求助须知:如何正确求助?哪些是违规求助? 4607156
关于积分的说明 14503411
捐赠科研通 4542602
什么是DOI,文献DOI怎么找? 2489110
邀请新用户注册赠送积分活动 1471198
关于科研通互助平台的介绍 1443233