The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis

规范化(社会学) 计算机科学 数据库规范化 算法 人工智能 数据挖掘 机器学习 模式识别(心理学) 人类学 社会学
作者
Kelsy Cabello-Solorzano,Isabela Ortigosa de Araujo,Marco Peña,Luís Correia,Antonio J. Tallón‐Ballesteros
出处
期刊:Lecture notes in networks and systems 卷期号:: 344-353 被引量:139
标识
DOI:10.1007/978-3-031-42536-3_33
摘要

In Machine Learning (ML) algorithms, data normalization plays a fundamental role. This research focuses on analyzing and comparing the impact of various normalization techniques. Three normalization techniques, namely Min-Max, Z-Score, and Unit Normalization, were applied as a preliminary step before using various ML algorithms. In the case of Min-Max we used two variants, one normalizing feature values in the interval [0, 1] and the other normalizing them in the interval $$[-1,1]$$ . The objective of this study is to determine, in a precise and informed manner, the most appropriate normalization technique for each algorithm, aiming to enhance accuracy in problem-solving. Through this comparative analysis, we aim to provide reliable recommendations for improving the performance of ML algorithms through proper data normalization. The results reveal that a few algorithms are virtually unaffected by whether normalization is used or not, regardless of the applied normalization technique. These findings contribute to the understanding of the relationship between data normalization and algorithm performance, allowing practitioners to make informed decisions regarding normalization techniques when using ML algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wei发布了新的文献求助10
3秒前
alex12259完成签到 ,获得积分10
11秒前
Wang完成签到 ,获得积分20
15秒前
Nancy完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
19秒前
qianci2009完成签到,获得积分0
19秒前
对对对完成签到 ,获得积分10
23秒前
plz94完成签到 ,获得积分10
29秒前
wei完成签到,获得积分10
35秒前
艺术家完成签到 ,获得积分10
35秒前
葡萄小伊ovo完成签到 ,获得积分10
41秒前
JamesPei应助xp1911采纳,获得10
42秒前
结实凌瑶完成签到 ,获得积分10
42秒前
43秒前
美好灵寒完成签到 ,获得积分10
45秒前
fhw完成签到 ,获得积分10
46秒前
Sofia完成签到 ,获得积分0
47秒前
48秒前
Thi发布了新的文献求助10
55秒前
乐观的箭头完成签到,获得积分10
1分钟前
砚木完成签到 ,获得积分10
1分钟前
dejavu完成签到,获得积分10
1分钟前
大甜甜完成签到 ,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小蘑菇应助xp1911采纳,获得10
1分钟前
1分钟前
滴滴完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SW冒险家完成签到 ,获得积分10
1分钟前
陈秋完成签到,获得积分10
1分钟前
耍酷的指甲油完成签到 ,获得积分10
1分钟前
陈秋发布了新的文献求助10
1分钟前
xp1911发布了新的文献求助10
1分钟前
GRATE完成签到 ,获得积分10
1分钟前
点点完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
小蘑菇应助科研通管家采纳,获得30
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599910
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838778
捐赠科研通 4673518
什么是DOI,文献DOI怎么找? 2538396
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013