均方误差
人工神经网络
随机森林
平均绝对误差
数学
沥青
剪应力
统计
材料科学
机器学习
岩土工程
工程类
复合材料
计算机科学
作者
Rabea Al-Jarazi,Ali Rahman,Changfa Ai,Zaid Al‐Huda,Hamza Ariouat
标识
DOI:10.1080/14680629.2023.2276412
摘要
The interlayer bonding condition in asphalt pavement significantly affects pavement performance. This study employed machine learning techniques to predict interlayer shear strength (ISS). Feed-forward artificial neural networks (ANN) and random forest (RF) models were developed and compared with traditional multiple linear regression (MLR). Utilizing 156 datasets, divided into 70% training and 30% testing, model performance was assessed using R-squared, mean squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE). SHapley Additive exPlanations (SHAP) was utilized for model interpretation. The results indicated that the ANN and RF models outperformed MLR, explaining over 95% of experimental data. RF exhibited superior performance with lowest MSE, RMSE, and MAE (0.0029, 0.0538, and 0.0376 MPa). SHAP analysis highlighted the significance of temperature, normal stress, shear deformation rate, and curing time as influential variables in ISS prediction. Elevated temperature adversely influenced ISS, while normal stress, shear deformation rate, and curing time positively contributed to ISS.
科研通智能强力驱动
Strongly Powered by AbleSci AI