ViTPose++: Vision Transformer for Generic Body Pose Estimation

计算机科学 姿势 可扩展性 变压器 推论 人工智能 编码器 模式识别(心理学) 机器学习 电压 数据库 操作系统 量子力学 物理
作者
Yufei Xu,Jing Zhang,Qiming Zhang,Dacheng Tao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1212-1230 被引量:72
标识
DOI:10.1109/tpami.2023.3330016
摘要

In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model dubbed ViTPose. ViTPose employs the plain and non-hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down or a bottom-up manner. It can be scaled to 1B parameters by taking the advantage of the scalable model capacity and high parallelism, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose++ model is proposed to deal with heterogeneous body keypoint categories via knowledge factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Our largest single model ViTPose-G sets a new record on the MS COCO test set without model ensemble. Furthermore, our ViTPose++ model achieves state-of-the-art performance simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without sacrificing inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WangYF2025完成签到 ,获得积分10
1秒前
1秒前
dd完成签到,获得积分20
2秒前
下次一定发布了新的文献求助10
2秒前
2秒前
小李发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
热情的远锋完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
Hello应助西瓜刀采纳,获得10
9秒前
达尔文发布了新的文献求助10
10秒前
YaoJason完成签到 ,获得积分10
11秒前
落后的彩虹完成签到 ,获得积分10
11秒前
12秒前
13秒前
佟韩发布了新的文献求助10
13秒前
gemini0615发布了新的文献求助10
13秒前
13秒前
13秒前
Dean应助Dong采纳,获得50
14秒前
隐形曼青应助TALE采纳,获得10
15秒前
zachary完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
细腻的曼彤完成签到,获得积分10
18秒前
LiuQianyi发布了新的文献求助30
18秒前
zachary发布了新的文献求助10
19秒前
搜集达人应助刘大大采纳,获得10
19秒前
21秒前
BaiQi发布了新的文献求助10
21秒前
21秒前
蘑菇腿发布了新的文献求助10
22秒前
浮游应助lemon采纳,获得10
22秒前
22秒前
肩膀发芽发布了新的文献求助10
23秒前
TALE发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690