ViTPose++: Vision Transformer for Generic Body Pose Estimation

计算机科学 姿势 变压器 人工智能 机器学习 计算机视觉 人机交互 软件工程 电压 电气工程 工程类
作者
Yufei Xu,Jing Zhang,Qiming Zhang,Jing Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (2): 1212-1230 被引量:19
标识
DOI:10.1109/tpami.2023.3330016
摘要

In this paper, we show the surprisingly good properties of plain vision transformers for body pose estimation from various aspects, namely simplicity in model structure, scalability in model size, flexibility in training paradigm, and transferability of knowledge between models, through a simple baseline model dubbed ViTPose. ViTPose employs the plain and non-hierarchical vision transformer as an encoder to encode features and a lightweight decoder to decode body keypoints in either a top-down or a bottom-up manner. It can be scaled to 1B parameters by taking the advantage of the scalable model capacity and high parallelism, setting a new Pareto front for throughput and performance. Besides, ViTPose is very flexible regarding the attention type, input resolution, and pre-training and fine-tuning strategy. Based on the flexibility, a novel ViTPose++ model is proposed to deal with heterogeneous body keypoint categories via knowledge factorization, i.e., adopting task-agnostic and task-specific feed-forward networks in the transformer. We also demonstrate that the knowledge of large ViTPose models can be easily transferred to small ones via a simple knowledge token. Our largest single model ViTPose-G sets a new record on the MS COCO test set without model ensemble. Furthermore, our ViTPose++ model achieves state-of-the-art performance simultaneously on a series of body pose estimation tasks, including MS COCO, AI Challenger, OCHuman, MPII for human keypoint detection, COCO-Wholebody for whole-body keypoint detection, as well as AP-10K and APT-36K for animal keypoint detection, without sacrificing inference speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助xhy采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
郑开司09发布了新的文献求助10
2秒前
黄紫红蓝发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
camera完成签到 ,获得积分20
4秒前
zino发布了新的文献求助10
4秒前
reck发布了新的文献求助10
5秒前
5秒前
苹果追命完成签到,获得积分20
6秒前
6秒前
烟花应助8564523采纳,获得10
6秒前
lkl完成签到 ,获得积分10
6秒前
01259发布了新的文献求助10
7秒前
7秒前
金子完成签到,获得积分10
7秒前
阳光下的星星完成签到,获得积分10
7秒前
顾己发布了新的文献求助10
7秒前
搁浅发布了新的文献求助10
7秒前
大桶水果茶完成签到,获得积分10
7秒前
闪闪飞机发布了新的文献求助10
8秒前
打打应助蔡蔡不菜菜采纳,获得10
8秒前
艺玲发布了新的文献求助10
8秒前
9秒前
坚果发布了新的文献求助10
9秒前
宋嬴一发布了新的文献求助10
9秒前
sweetbearm应助丞诺采纳,获得10
9秒前
9秒前
情怀应助缥缈的碧萱采纳,获得10
9秒前
一株多肉完成签到,获得积分10
10秒前
柯柯完成签到,获得积分10
10秒前
是赤赤呀完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672