Advanced Modeling and Analysis of Individual and Combined TSN Shapers in OMNeT++

计算机科学 服务质量 灵活性(工程) Guard(计算机科学) 桥(图论) 计算机网络 医学 统计 数学 内科学 程序设计语言
作者
Rubi Debnath,Philipp Hortig,Luxi Zhao,Sebastian Steinhorst
标识
DOI:10.1109/rtcsa58653.2023.00029
摘要

The selection of a Time-Sensitive Networking (TSN) shaping mechanism is a crucial design decision that impacts the Quality of Service (QoS) of applications and configuration complexity. However, current research has mainly evaluated TSN shapers individually, despite them being designed to work together in an egress port. Hence, the lack of investigation of the mixed TSN shaping mechanism is a major limitation of the current state of the art. Combined TSN traffic shaping provides greater flexibility to improve QoS than individual shapers, making it particularly beneficial for real-time applications. This paper aims to bridge this research gap by implementing the Asynchronous Traffic Shaper (ATS) in a plug-and-play manner, enabling its use individually or in combination with other TSN shapers. We propose various models of mixed TSN shaper architectures and implement the frozen and non-frozen credit behavior of the Time Aware Shaper (TAS) + Credit Based Shaper (CBS) during the guard band (GB) using OMNeT++. Furthermore, we compare the simulation results of ATS and CBS with the Network Calculus (NC) upper bounds. Our results indicate that the simulated delays (SMDs) were significantly lower than the theoretical worst-case delays (WCDs) obtained from the NC, indicating the need for tighter theoretical upper bounds, particularly for higher network loads. To the best of our knowledge, we are the first to provide simulation-based performance analysis of the combined $\text{TAS}+\text{ATS}+\text{CBS}$ and $\text{TAS}+\text{ATS}+\text{Strict}$ Priority (SP) architecture. Overall, this paper highlights the benefits of combining TSN shapers and encourages further research into the potential advantages of utilizing multiple shapers simultaneously to decrease reliance on TAS and CBS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xjn发布了新的文献求助10
刚刚
劲秉应助kiuikiu采纳,获得10
1秒前
哎哟很烦完成签到,获得积分10
1秒前
1秒前
zho关闭了zho文献求助
1秒前
科研通AI5应助Jeffery采纳,获得10
2秒前
2秒前
顾矜应助猩心采纳,获得10
3秒前
4秒前
科研通AI5应助杨桃采纳,获得10
4秒前
蔚岚影落发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
科研通AI5应助琳琅采纳,获得10
5秒前
小云飘飘发布了新的文献求助10
6秒前
Ha7完成签到,获得积分10
6秒前
Ava应助Megan采纳,获得10
6秒前
星辰大海应助DJMZ采纳,获得10
6秒前
北城无夏发布了新的文献求助10
7秒前
7秒前
7秒前
十丶年完成签到,获得积分10
7秒前
7秒前
高数数完成签到 ,获得积分10
8秒前
9秒前
9秒前
洗剪吹完成签到,获得积分10
10秒前
1604531786发布了新的文献求助10
10秒前
路灯下的小伙完成签到,获得积分10
10秒前
执着的一兰完成签到,获得积分10
11秒前
硕小牛完成签到,获得积分10
11秒前
chen1发布了新的文献求助10
11秒前
zjw发布了新的文献求助10
11秒前
Glory关注了科研通微信公众号
12秒前
满意幼枫完成签到 ,获得积分20
13秒前
13秒前
14秒前
大碗宽面发布了新的文献求助10
15秒前
Hello应助卢浩采纳,获得10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300