亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developing an Electroencephalography-Based Model for Predicting Response to Antidepressant Medication

依西酞普兰 舍曲林 医学 队列 重性抑郁障碍 萧条(经济学) 西酞普兰 抗抑郁药 随机对照试验 5-羟色胺再摄取抑制剂 临床试验 精神科 病人健康调查表 内科学 焦虑 心情 抑郁症状 经济 宏观经济学
作者
Benjamin Schwartzmann,Prabhjot Dhami,Rudolf Uher,Raymond W. Lam,Benício N. Frey,Roumen Milev,Daniel J. Müller,Pierre Blier,Cláudio N. Soares,Sagar V. Parikh,Gustavo Turecki,Jane A. Foster,Susan Rotzinger,Sidney H. Kennedy,Faranak Farzan
出处
期刊:JAMA network open [American Medical Association]
卷期号:6 (9): e2336094-e2336094 被引量:5
标识
DOI:10.1001/jamanetworkopen.2023.36094
摘要

Untreated depression is a growing public health concern, with patients often facing a prolonged trial-and-error process in search of effective treatment. Developing a predictive model for treatment response in clinical practice remains challenging.To establish a model based on electroencephalography (EEG) to predict response to 2 distinct selective serotonin reuptake inhibitor (SSRI) medications.This prognostic study developed a predictive model using EEG data collected between 2011 and 2017 from 2 independent cohorts of participants with depression: 1 from the first Canadian Biomarker Integration Network in Depression (CAN-BIND) group and the other from the Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care (EMBARC) consortium. Eligible participants included those aged 18 to 65 years who had a diagnosis of major depressive disorder. Data were analyzed from January to December 2022.In an open-label trial, CAN-BIND participants received an 8-week treatment regimen of escitalopram treatment (10-20 mg), and EMBARC participants were randomized in a double-blind trial to receive an 8-week sertraline (50-200 mg) treatment or placebo treatment.The model's performance was estimated using balanced accuracy, specificity, and sensitivity metrics. The model used data from the CAN-BIND cohort for internal validation, and data from the treatment group of the EMBARC cohort for external validation. At week 8, response to treatment was defined as a 50% or greater reduction in the primary, clinician-rated scale of depression severity.The CAN-BIND cohort included 125 participants (mean [SD] age, 36.4 [13.0] years; 78 [62.4%] women), and the EMBARC sertraline treatment group included 105 participants (mean [SD] age, 38.4 [13.8] years; 72 [68.6%] women). The model achieved a balanced accuracy of 64.2% (95% CI, 55.8%-72.6%), sensitivity of 66.1% (95% CI, 53.7%-78.5%), and specificity of 62.3% (95% CI, 50.1%-73.8%) during internal validation with CAN-BIND. During external validation with EMBARC, the model achieved a balanced accuracy of 63.7% (95% CI, 54.5%-72.8%), sensitivity of 58.8% (95% CI, 45.3%-72.3%), and specificity of 68.5% (95% CI, 56.1%-80.9%). Additionally, the balanced accuracy for the EMBARC placebo group (118 participants) was 48.7% (95% CI, 39.3%-58.0%), the sensitivity was 50.0% (95% CI, 35.2%-64.8%), and the specificity was 47.3% (95% CI, 35.9%-58.7%), suggesting the model's specificity in predicting SSRIs treatment response.In this prognostic study, an EEG-based model was developed and validated in 2 independent cohorts. The model showed promising accuracy in predicting treatment response to 2 distinct SSRIs, suggesting potential applications for personalized depression treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助深情谷冬采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
1分钟前
evermore完成签到,获得积分10
2分钟前
lala完成签到,获得积分10
2分钟前
路过的完成签到,获得积分10
2分钟前
CodeCraft应助路过的采纳,获得10
2分钟前
我是站长才怪应助evermore采纳,获得10
2分钟前
科目三应助evermore采纳,获得10
2分钟前
我是站长才怪应助evermore采纳,获得10
2分钟前
2分钟前
2分钟前
沉默向日葵完成签到,获得积分20
2分钟前
碗碗完成签到,获得积分10
2分钟前
酷波er应助沉默向日葵采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
wwe完成签到,获得积分10
3分钟前
小孙完成签到,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
5分钟前
yoona发布了新的文献求助10
5分钟前
科研通AI5应助didi采纳,获得30
6分钟前
6分钟前
yoona发布了新的文献求助10
6分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
田様应助异次元的玫瑰采纳,获得10
7分钟前
7分钟前
7分钟前
英勇的醉蝶完成签到,获得积分10
7分钟前
老石完成签到 ,获得积分10
8分钟前
8分钟前
didi发布了新的文献求助30
8分钟前
8分钟前
8分钟前
Owen应助科研通管家采纳,获得10
8分钟前
传奇3应助科研通管家采纳,获得10
8分钟前
8分钟前
Jasper应助抹茶冰淇淋采纳,获得10
9分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491365
求助须知:如何正确求助?哪些是违规求助? 3077940
关于积分的说明 9151260
捐赠科研通 2770512
什么是DOI,文献DOI怎么找? 1520516
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298