Machine learning framework for intelligent aeration control in wastewater treatment plants: Automatic feature engineering based on variation sliding layer

曝气 人工智能 机器学习 废水 计算机科学 污水处理 前馈 特征(语言学) 智能控制 工程类 控制工程 环境工程 废物管理 语言学 哲学
作者
Yuqi Wang,Hongcheng Wang,Yunpeng Song,Shiqing Zhou,Qiu-Ning Li,Bin Liang,Wenzong Liu,Yiwei Zhao,Aijie Wang
出处
期刊:Water Research [Elsevier]
卷期号:246: 120676-120676 被引量:36
标识
DOI:10.1016/j.watres.2023.120676
摘要

Intelligent control of wastewater treatment plants (WWTPs) has the potential to reduce energy consumption and greenhouse gas emissions significantly. Machine learning (ML) provides a promising solution to handle the increasing amount and complexity of generated data. However, relationships between the features of wastewater datasets are generally inconspicuous, which hinders the application of artificial intelligence (AI) in WWTPs intelligent control. In this study, we develop an automatic framework of feature engineering based on variation sliding layer (VSL) to control the air demand precisely. Results demonstrated that using VSL in classic machine learning, deep learning, and ensemble learning could significantly improve the efficiency of aeration intelligent control in WWTPs. Bayesian regression and ensemble learning achieved the highest accuracy for predicting air demand. The developed models with VSL-ML models were also successfully implemented under the full-scale wastewater treatment plant, showing a 16.12 % reduction in demand compared to conventional aeration control of preset dissolved oxygen (DO) and feedback to the blower. The VSL-ML models showed great potential to be applied for the precision air demand prediction and control. The package as a tripartite library of Python is called wwtpai, which is freely accessible on GitHub and CSDN to remove technical barriers to the application of AI technology in WWTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
浮云完成签到,获得积分10
2秒前
2秒前
涵涵涵发布了新的文献求助10
3秒前
lily完成签到,获得积分10
3秒前
3秒前
普乔发布了新的文献求助10
3秒前
一年半太久只争朝夕完成签到,获得积分10
3秒前
乐乐应助JonyiCheng采纳,获得10
4秒前
传奇3应助毕双洲采纳,获得10
4秒前
4秒前
ly完成签到,获得积分10
4秒前
now发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
顾矜应助背后海莲采纳,获得10
6秒前
华仔应助paulmichael采纳,获得10
6秒前
PEITON发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
科研通AI5应助眼睛大以寒采纳,获得10
8秒前
wxh发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
NexusExplorer应助kw采纳,获得10
9秒前
杨振完成签到,获得积分10
10秒前
10秒前
无奈秋荷发布了新的文献求助10
10秒前
wu发布了新的文献求助10
10秒前
Ricky发布了新的文献求助10
10秒前
10秒前
蔻蔻完成签到,获得积分10
10秒前
怎么说发布了新的文献求助10
12秒前
你好呀发布了新的文献求助10
12秒前
夏青荷发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543260
求助须知:如何正确求助?哪些是违规求助? 3120651
关于积分的说明 9343550
捐赠科研通 2818657
什么是DOI,文献DOI怎么找? 1549757
邀请新用户注册赠送积分活动 722221
科研通“疑难数据库(出版商)”最低求助积分说明 713078