亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Weakly Supervised Sea Fog Detection in Remote Sensing Images via Prototype Learning

计算机科学 遥感 判别式 背景(考古学) 人工智能 目标检测 像素 分割 卫星 地质学 工程类 航空航天工程 古生物学
作者
Yixiang Huang,Ming Wu,Xin Jiang,J.-L. F. Li,Mengqiu Xu,Chuang Zhang,Jun Guo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:3
标识
DOI:10.1109/tgrs.2023.3323926
摘要

Sea fog detection is a challenging and significant task in the field of remote sensing. Deep learning-based methods have shown promising potential, but require a large amount of pixel-level labeled data that are time-consuming and labor-intensive to acquire. To scale up the dataset and overcome the limitations of pixel-level annotation, we attempt to explore the existing knowledge from historical statistics for label efficient sea fog detection. In this paper, we propose an image-level Weakly Supervised Sea Fog Detection Dataset (WS-SFDD) and a novel weakly supervised sea fog detection framework via prototype learning, named ProCAM. According to the sea fog events recorded by the Marine Weather Review published quarterly by the National Meteorological Center of China, we collect the sea fog images from Himawari-8 satellite data and obtain free image-level labels to construct the dataset. However, with image-level annotations, existing weakly supervised semantic segmentation methods mainly rely on class activation maps (CAMs) and have limitations when applied to such a specific scenario: 1) the pseudo labels mainly cover the most discriminative part of object regions that are incomplete; 2) the background is complex with varying atmospheric conditions and it is difficult to distinguish sea fog from low clouds due to their high similarity in spectral characteristics; 3) the co-occurring context like 'sea' distracts the model and thus degrades the performance. To address the above issues, in our proposed ProCAM, we first design a prototype re-activation (PRA) module that reactivates self-similar sea fog regions by pixel-to-prototype feature matching to improve the robustness and completeness of CAMs. Then, we develop a pixel-to-prototype contrastive (PPC) learning method to increase the distance between sea fog and background in the embedding space for learning more discriminative dense features. Finally, a self-augmented regularization (SAR) strategy is presented to decouple sea fog from its co-occurring context and thus avoid background interference. Extensive experiments on the WS-SFDD dataset demonstrate our proposed method ProCAM achieves superior performance with an F1-score of 77.59% and a critical success index of 63.39%. To the best of our knowledge, this is the first work to perform image-level weakly supervised sea fog detection in remote sensing images. The dataset and code are available at https://github.com/yixianghuang/ProCAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
27秒前
老石完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
ni发布了新的文献求助10
2分钟前
非洲大象完成签到,获得积分10
2分钟前
斯文败类应助ni采纳,获得10
2分钟前
科研通AI5应助Demi_Ming采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
Demi_Ming发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
aa完成签到,获得积分10
3分钟前
LMY1411完成签到,获得积分10
3分钟前
3分钟前
4分钟前
NSstupid发布了新的文献求助10
4分钟前
NSstupid完成签到,获得积分10
4分钟前
4分钟前
小马甲应助Demi_Ming采纳,获得10
4分钟前
在水一方应助奈思采纳,获得10
5分钟前
Hello应助kdjm688采纳,获得10
5分钟前
5分钟前
李健应助wbs13521采纳,获得10
5分钟前
Demi_Ming发布了新的文献求助10
5分钟前
6分钟前
RylNG完成签到,获得积分10
6分钟前
6分钟前
kdjm688发布了新的文献求助10
6分钟前
Hziyi发布了新的文献求助10
6分钟前
Hziyi完成签到,获得积分20
6分钟前
6分钟前
冬去春来完成签到 ,获得积分10
6分钟前
FashionBoy应助科研通管家采纳,获得10
7分钟前
小二郎应助点心采纳,获得10
7分钟前
8分钟前
善学以致用应助FXDD采纳,获得10
8分钟前
8分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575079
求助须知:如何正确求助?哪些是违规求助? 3145092
关于积分的说明 9458069
捐赠科研通 2846362
什么是DOI,文献DOI怎么找? 1564821
邀请新用户注册赠送积分活动 732613
科研通“疑难数据库(出版商)”最低求助积分说明 719188