3DSRNet: 3-D Spine Reconstruction Network Using 2-D Orthogonal X-Ray Images Based on Deep Learning

人工智能 迭代重建 计算机科学 三维重建 医学诊断 计算机视觉 骨科手术 医学 放射科 外科
作者
Yuan Gao,Hui Tang,Rongjun Ge,Jin Liu,Xin Chen,Yan Xi,Xu Ji,Huazhong Shu,Zhu Jian,Gouenou Coatrieux,Jean-Louis Coatrieux,Yang Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-14 被引量:5
标识
DOI:10.1109/tim.2023.3296838
摘要

Orthopedic spine disease is one of the most common diseases in the clinic. The diagnosis of spinal orthopedic injury is an important basis for the treatment of spinal orthopedic diseases. Due to the complexity of the spine structure, doctors usually need to rely on orthopedic CT image data for accurate diagnosis. In some cases, such as poor areas or in emergency situations, it is difficult for doctors to make accurate diagnoses using only 2D x-ray images due to lack of 3D imaging equipment or time crunch. Therefore, an approach based on 2D x-ray images is needed to solve this problem. In this paper, a novel 3D spine reconstruction technique based on 2D orthogonal x-ray images (3DSRNet) is designed. 3DSRNet uses a generative adversarial network architecture and novel modules to make 3D spine reconstruction more accurate and efficient. Spine reconstruction CNN-transformer framework (SRCT) is employed to effectively integrate local bone surface information and long-range relation spinal structure information. Spine reconstruction texture framework (SRTE) is used to extract spine texture features to enhance the effect of pixel-level reconstruction. Experiments show that 3DSRNet achieves excellent 3D spine reconstruction results on multiple metrics including PSNR (45.4666 dB), SSIM (0.8850), CS (0.7662), MAE (23.6696), MSE (9016.1044), and LPIPS (0.0768).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Lysine发布了新的文献求助10
1秒前
1秒前
Lucas应助七七采纳,获得20
4秒前
慕青应助你好采纳,获得10
4秒前
勤qin完成签到 ,获得积分10
5秒前
科研狗发布了新的文献求助10
5秒前
5秒前
lly完成签到,获得积分10
7秒前
8秒前
美好雁丝发布了新的文献求助10
10秒前
阿苏完成签到 ,获得积分10
11秒前
11秒前
12秒前
陶醉的烤鸡完成签到 ,获得积分10
13秒前
独特的沛凝完成签到,获得积分10
14秒前
奋斗机器猫完成签到 ,获得积分10
17秒前
细心夏瑶完成签到,获得积分10
17秒前
18秒前
慕青应助流年采纳,获得20
19秒前
20秒前
CC完成签到 ,获得积分10
22秒前
22秒前
李爱国应助科研界星辰采纳,获得10
22秒前
22秒前
23秒前
24秒前
moon完成签到,获得积分20
24秒前
25秒前
徐小二发布了新的文献求助10
25秒前
SCI完成签到 ,获得积分10
26秒前
changping应助zh采纳,获得10
27秒前
MOF发布了新的文献求助10
28秒前
29秒前
30秒前
果冻呀发布了新的文献求助10
30秒前
30秒前
轻狂书生完成签到,获得积分10
30秒前
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511