Macroscopic and mesoscopic comparative study of frozen loess under loading and unloading

介观物理学 材料科学 多孔性 黄土 变形(气象学) 中尺度气象学 消散 可塑性 岩土工程 多孔介质 固体力学 复合材料 地质学 物理 量子力学 地貌学 气候学 热力学
作者
Shijie Chen,Wei Ma,Guoyu Li,Peng Zhang
出处
期刊:Cold Regions Science and Technology [Elsevier]
卷期号:216: 104001-104001 被引量:3
标识
DOI:10.1016/j.coldregions.2023.104001
摘要

This paper utilizes computed tomography (CT) real–time observation technology to investigate the damage mechanism of frozen loess under loading and unloading. The intrinsic connections between macroscopic mechanical degradation and mesoscopic damage in frozen loess were established through a comparative analysis of macroscopic mechanical parameters (such as dissipation energy and elastic strain energy) and mesoscopic structural parameters (such as porosity increment and mesoscopic structural damage increment) of frozen loess under loading and unloading. Furthermore, the relationships between damage variables at different scales under the effects of loading and unloading were explored. The experimental results demonstrate that during the elastic strain stage, the dissipated energy, porosity increment, and microscopic damage increment of frozen soil exhibit a linear increase with strain. Following loading and unloading, the porosity is unable to be fully restored to its original state due to the development of new cracks. At this stage, the deformation is not entirely elastic and includes some plastic deformation. During the plastic deformation stage, the dissipated energy tends to stabilize, while the porosity increment and microscopic damage increment continue to increase substantially. The pore structure of a specimen undergoes significant alterations, with increased displacement and rearrangement of soil particles and ongoing expansion of cracks. The damage evolution trends at both the macroscale and mesoscale remain consistent during this stage. This study offers insights into the construction of a cross–scale macroscale/mesoscale ontological damage model, serving as a valuable reference for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cheney完成签到,获得积分10
刚刚
tt发布了新的文献求助10
1秒前
咖喱姜酱发布了新的文献求助10
1秒前
汉堡包应助科研民工采纳,获得10
1秒前
nasa应助缝纫工采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
青葙完成签到,获得积分10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
2秒前
过时的孤晴完成签到 ,获得积分10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
spc68应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
xxz应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
脑洞疼应助cl采纳,获得10
6秒前
6秒前
腾飞完成签到,获得积分10
7秒前
lin关闭了lin文献求助
7秒前
三岁半发布了新的文献求助10
8秒前
lyncee完成签到,获得积分10
8秒前
8秒前
赘婿应助SUKAILIMAI采纳,获得10
9秒前
9秒前
wt发布了新的文献求助10
9秒前
FashionBoy应助逆流的鱼采纳,获得10
10秒前
10秒前
11秒前
在水一方应助今夕采纳,获得10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692886
求助须知:如何正确求助?哪些是违规求助? 5090698
关于积分的说明 15210088
捐赠科研通 4850102
什么是DOI,文献DOI怎么找? 2601504
邀请新用户注册赠送积分活动 1553332
关于科研通互助平台的介绍 1511381