Macroscopic and mesoscopic comparative study of frozen loess under loading and unloading

介观物理学 材料科学 多孔性 黄土 变形(气象学) 中尺度气象学 消散 可塑性 岩土工程 多孔介质 固体力学 复合材料 地质学 物理 量子力学 地貌学 气候学 热力学
作者
Shijie Chen,Wei Ma,Guoyu Li,Peng Zhang
出处
期刊:Cold Regions Science and Technology [Elsevier]
卷期号:216: 104001-104001 被引量:3
标识
DOI:10.1016/j.coldregions.2023.104001
摘要

This paper utilizes computed tomography (CT) real–time observation technology to investigate the damage mechanism of frozen loess under loading and unloading. The intrinsic connections between macroscopic mechanical degradation and mesoscopic damage in frozen loess were established through a comparative analysis of macroscopic mechanical parameters (such as dissipation energy and elastic strain energy) and mesoscopic structural parameters (such as porosity increment and mesoscopic structural damage increment) of frozen loess under loading and unloading. Furthermore, the relationships between damage variables at different scales under the effects of loading and unloading were explored. The experimental results demonstrate that during the elastic strain stage, the dissipated energy, porosity increment, and microscopic damage increment of frozen soil exhibit a linear increase with strain. Following loading and unloading, the porosity is unable to be fully restored to its original state due to the development of new cracks. At this stage, the deformation is not entirely elastic and includes some plastic deformation. During the plastic deformation stage, the dissipated energy tends to stabilize, while the porosity increment and microscopic damage increment continue to increase substantially. The pore structure of a specimen undergoes significant alterations, with increased displacement and rearrangement of soil particles and ongoing expansion of cracks. The damage evolution trends at both the macroscale and mesoscale remain consistent during this stage. This study offers insights into the construction of a cross–scale macroscale/mesoscale ontological damage model, serving as a valuable reference for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心的青亦完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
3秒前
白瑾完成签到,获得积分10
5秒前
解语花031发布了新的文献求助10
6秒前
科目三应助子木采纳,获得10
9秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
孤星完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
Diliam应助多情的青烟采纳,获得30
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Joy完成签到,获得积分10
11秒前
无奈的又晴完成签到,获得积分10
12秒前
nini完成签到,获得积分10
13秒前
有魅力草丛完成签到 ,获得积分20
13秒前
杭紫雪完成签到,获得积分10
14秒前
lanbing802完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
有魅力草丛关注了科研通微信公众号
18秒前
wcuzhl完成签到,获得积分10
19秒前
20秒前
Bobi完成签到 ,获得积分10
20秒前
与离完成签到 ,获得积分10
21秒前
yuan完成签到,获得积分10
21秒前
给我打只山鹰吧完成签到,获得积分10
24秒前
biye完成签到 ,获得积分10
24秒前
GQ完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900