Macroscopic and mesoscopic comparative study of frozen loess under loading and unloading

介观物理学 材料科学 多孔性 黄土 变形(气象学) 中尺度气象学 消散 可塑性 岩土工程 多孔介质 固体力学 复合材料 地质学 物理 量子力学 地貌学 气候学 热力学
作者
Shijie Chen,Wei Ma,Guoyu Li,Peng Zhang
出处
期刊:Cold Regions Science and Technology [Elsevier]
卷期号:216: 104001-104001 被引量:3
标识
DOI:10.1016/j.coldregions.2023.104001
摘要

This paper utilizes computed tomography (CT) real–time observation technology to investigate the damage mechanism of frozen loess under loading and unloading. The intrinsic connections between macroscopic mechanical degradation and mesoscopic damage in frozen loess were established through a comparative analysis of macroscopic mechanical parameters (such as dissipation energy and elastic strain energy) and mesoscopic structural parameters (such as porosity increment and mesoscopic structural damage increment) of frozen loess under loading and unloading. Furthermore, the relationships between damage variables at different scales under the effects of loading and unloading were explored. The experimental results demonstrate that during the elastic strain stage, the dissipated energy, porosity increment, and microscopic damage increment of frozen soil exhibit a linear increase with strain. Following loading and unloading, the porosity is unable to be fully restored to its original state due to the development of new cracks. At this stage, the deformation is not entirely elastic and includes some plastic deformation. During the plastic deformation stage, the dissipated energy tends to stabilize, while the porosity increment and microscopic damage increment continue to increase substantially. The pore structure of a specimen undergoes significant alterations, with increased displacement and rearrangement of soil particles and ongoing expansion of cracks. The damage evolution trends at both the macroscale and mesoscale remain consistent during this stage. This study offers insights into the construction of a cross–scale macroscale/mesoscale ontological damage model, serving as a valuable reference for future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
你怎么睡得着觉完成签到,获得积分10
刚刚
刚刚
xiaoxu完成签到,获得积分10
刚刚
1秒前
xiaoyan.yao完成签到,获得积分10
1秒前
2秒前
2秒前
桐桐应助醉在肩上采纳,获得10
3秒前
4秒前
5秒前
5秒前
嘉博学长完成签到,获得积分10
5秒前
6秒前
沧岚QAQ发布了新的文献求助10
6秒前
嘻嘻发布了新的文献求助10
7秒前
魔王降临发布了新的文献求助10
7秒前
KEHUGE发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
董舒婷发布了新的文献求助10
9秒前
正直静曼完成签到 ,获得积分10
9秒前
9秒前
moshi发布了新的文献求助10
10秒前
11秒前
11秒前
北冥有猫发布了新的文献求助10
11秒前
box发布了新的文献求助10
11秒前
11秒前
风中的觅风完成签到,获得积分10
11秒前
ningning完成签到,获得积分10
11秒前
大模型应助OO采纳,获得10
12秒前
12秒前
宁好发布了新的文献求助10
13秒前
13秒前
14秒前
hhh完成签到,获得积分10
15秒前
可爱的函函应助jbq采纳,获得10
15秒前
掮客发布了新的文献求助10
15秒前
隐形的baby完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502