Macroscopic and mesoscopic comparative study of frozen loess under loading and unloading

介观物理学 材料科学 多孔性 黄土 变形(气象学) 中尺度气象学 消散 可塑性 岩土工程 多孔介质 固体力学 复合材料 地质学 物理 量子力学 地貌学 气候学 热力学
作者
Shijie Chen,Wei Ma,Guoyu Li,Peng Zhang
出处
期刊:Cold Regions Science and Technology [Elsevier]
卷期号:216: 104001-104001 被引量:3
标识
DOI:10.1016/j.coldregions.2023.104001
摘要

This paper utilizes computed tomography (CT) real–time observation technology to investigate the damage mechanism of frozen loess under loading and unloading. The intrinsic connections between macroscopic mechanical degradation and mesoscopic damage in frozen loess were established through a comparative analysis of macroscopic mechanical parameters (such as dissipation energy and elastic strain energy) and mesoscopic structural parameters (such as porosity increment and mesoscopic structural damage increment) of frozen loess under loading and unloading. Furthermore, the relationships between damage variables at different scales under the effects of loading and unloading were explored. The experimental results demonstrate that during the elastic strain stage, the dissipated energy, porosity increment, and microscopic damage increment of frozen soil exhibit a linear increase with strain. Following loading and unloading, the porosity is unable to be fully restored to its original state due to the development of new cracks. At this stage, the deformation is not entirely elastic and includes some plastic deformation. During the plastic deformation stage, the dissipated energy tends to stabilize, while the porosity increment and microscopic damage increment continue to increase substantially. The pore structure of a specimen undergoes significant alterations, with increased displacement and rearrangement of soil particles and ongoing expansion of cracks. The damage evolution trends at both the macroscale and mesoscale remain consistent during this stage. This study offers insights into the construction of a cross–scale macroscale/mesoscale ontological damage model, serving as a valuable reference for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助vvvv采纳,获得10
刚刚
qq完成签到,获得积分10
1秒前
Siri完成签到,获得积分10
2秒前
醉林发布了新的文献求助10
4秒前
脑洞疼应助liang2508采纳,获得10
5秒前
ahua15s完成签到,获得积分10
5秒前
6秒前
Jane2024完成签到,获得积分10
7秒前
xyq完成签到,获得积分10
8秒前
传统的夜南完成签到,获得积分10
8秒前
小马甲应助黄桃采纳,获得10
9秒前
慕青应助gugugaga采纳,获得10
9秒前
大个应助qqqwww采纳,获得10
9秒前
施一完成签到,获得积分10
9秒前
9秒前
10秒前
852应助xyq采纳,获得30
11秒前
和谐天川完成签到,获得积分10
11秒前
李佳笑发布了新的文献求助10
12秒前
Smar_zcl举报爱科研的咩咩求助涉嫌违规
12秒前
Sean完成签到,获得积分10
13秒前
彭于晏应助AN采纳,获得10
13秒前
13秒前
myc发布了新的文献求助10
14秒前
羊羊羊完成签到,获得积分10
14秒前
14秒前
xiaozhi415发布了新的文献求助10
16秒前
勤恳钢笔完成签到 ,获得积分10
16秒前
16秒前
fkalltn完成签到,获得积分10
16秒前
DrY发布了新的文献求助10
17秒前
17秒前
负责新筠发布了新的文献求助10
17秒前
17秒前
11发布了新的文献求助10
18秒前
19秒前
19秒前
wwww发布了新的文献求助10
20秒前
zwjhbz完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350697
求助须知:如何正确求助?哪些是违规求助? 4484017
关于积分的说明 13957727
捐赠科研通 4383424
什么是DOI,文献DOI怎么找? 2408351
邀请新用户注册赠送积分活动 1400964
关于科研通互助平台的介绍 1374387