Macroscopic and mesoscopic comparative study of frozen loess under loading and unloading

介观物理学 材料科学 多孔性 黄土 变形(气象学) 中尺度气象学 消散 可塑性 岩土工程 多孔介质 固体力学 复合材料 地质学 物理 量子力学 地貌学 气候学 热力学
作者
Shijie Chen,Wei Ma,Guoyu Li,Peng Zhang
出处
期刊:Cold Regions Science and Technology [Elsevier BV]
卷期号:216: 104001-104001 被引量:3
标识
DOI:10.1016/j.coldregions.2023.104001
摘要

This paper utilizes computed tomography (CT) real–time observation technology to investigate the damage mechanism of frozen loess under loading and unloading. The intrinsic connections between macroscopic mechanical degradation and mesoscopic damage in frozen loess were established through a comparative analysis of macroscopic mechanical parameters (such as dissipation energy and elastic strain energy) and mesoscopic structural parameters (such as porosity increment and mesoscopic structural damage increment) of frozen loess under loading and unloading. Furthermore, the relationships between damage variables at different scales under the effects of loading and unloading were explored. The experimental results demonstrate that during the elastic strain stage, the dissipated energy, porosity increment, and microscopic damage increment of frozen soil exhibit a linear increase with strain. Following loading and unloading, the porosity is unable to be fully restored to its original state due to the development of new cracks. At this stage, the deformation is not entirely elastic and includes some plastic deformation. During the plastic deformation stage, the dissipated energy tends to stabilize, while the porosity increment and microscopic damage increment continue to increase substantially. The pore structure of a specimen undergoes significant alterations, with increased displacement and rearrangement of soil particles and ongoing expansion of cracks. The damage evolution trends at both the macroscale and mesoscale remain consistent during this stage. This study offers insights into the construction of a cross–scale macroscale/mesoscale ontological damage model, serving as a valuable reference for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦想or现实完成签到,获得积分10
1秒前
程艳完成签到 ,获得积分10
1秒前
星辰大海应助下雪啦采纳,获得10
1秒前
FashionBoy应助疯狂求助文献采纳,获得10
3秒前
3秒前
4秒前
4秒前
浮游应助wpeng326采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
阔达小松鼠完成签到,获得积分10
6秒前
7秒前
CLZ发布了新的文献求助10
9秒前
英吉利25发布了新的文献求助10
9秒前
尉迟希望应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
9秒前
changping应助科研通管家采纳,获得30
9秒前
大气寻真发布了新的文献求助10
11秒前
11秒前
Mia完成签到,获得积分10
13秒前
13秒前
慕青应助无辜紫菜采纳,获得10
14秒前
Sarah完成签到 ,获得积分10
14秒前
xx357951发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Rez完成签到,获得积分10
17秒前
单纯玫瑰发布了新的文献求助20
17秒前
_蝴蝶小姐发布了新的文献求助30
21秒前
浮游应助L_Zoe_D02采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
25秒前
26秒前
雪白的友安完成签到 ,获得积分10
26秒前
ahxb完成签到,获得积分10
27秒前
xx357951完成签到,获得积分10
27秒前
小蚂蚁完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109259
求助须知:如何正确求助?哪些是违规求助? 4318010
关于积分的说明 13453265
捐赠科研通 4147874
什么是DOI,文献DOI怎么找? 2272888
邀请新用户注册赠送积分活动 1275070
关于科研通互助平台的介绍 1213256