Construction of a Diagnostic Model for Small Cell Lung Cancer Combining Metabolomics and Integrated Machine Learning

队列 代谢组学 脂类学 医学 内科学 肿瘤科 肺癌 阶段(地层学) 癌症 诊断模型 机器学习 生物信息学 生物 计算机科学 数据挖掘 古生物学
作者
Xiaoling Shang,Chenyue Zhang,Ronghua Kong,Chenglong Zhao,Haiyong Wang
出处
期刊:Oncologist [AlphaMed Press]
卷期号:29 (3): e392-e401 被引量:6
标识
DOI:10.1093/oncolo/oyad261
摘要

Abstract Background To date, no study has systematically explored the potential role of serum metabolites and lipids in the diagnosis of small cell lung cancer (SCLC). Therefore, we aimed to conduct a case-cohort study that included 191 cases of SCLC, 91 patients with lung adenocarcinoma, 82 patients with squamous cell carcinoma, and 97 healthy controls. Methods Metabolomics and lipidomics were applied to analyze different metabolites and lipids in the serum of these patients. The SCLC diagnosis model (d-model) was constructed using an integrated machine learning technology and a training cohort (n = 323) and was validated in a testing cohort (n=138). Results Eight metabolites, including 1-mristoyl-sn-glycero-3-phosphocholine, 16b-hydroxyestradiol, 3-phosphoserine, cholesteryl sulfate, D-lyxose, dioctyl phthalate, DL-lactate and Leu-Phe, were successfully selected to distinguish SCLC from controls. The d-model was constructed based on these 8 metabolites and showed improved diagnostic performance for SCLC, with the area under curve (AUC) of 0.933 in the training cohort and 0.922 in the testing cohort. Importantly, the d-model still had an excellent diagnostic performance after adjusting the stage and related clinical variables and, combined with the progastrin-releasing peptide (ProGRP), showed the best diagnostic performance with 0.975 of AUC for limited-stage patients. Conclusion This study is the first to analyze the difference between metabolomics and lipidomics and to construct a d-model to detect SCLC using integrated machine learning. This study may be of great significance for the screening and early diagnosis of SCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得30
刚刚
脑洞疼应助科研通管家采纳,获得30
刚刚
yookia应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
pluto应助科研通管家采纳,获得10
刚刚
刚刚
Famiglistmo完成签到,获得积分10
2秒前
向日葵完成签到,获得积分10
2秒前
3秒前
彬彬爷888发布了新的文献求助10
3秒前
Lucas应助wq采纳,获得10
5秒前
5秒前
5秒前
谦让文昊完成签到,获得积分10
5秒前
5秒前
7秒前
kuyi完成签到 ,获得积分10
8秒前
酷波er应助迷你的书蕾采纳,获得10
8秒前
东风发布了新的文献求助10
9秒前
10秒前
LANER完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
华半仙完成签到,获得积分20
13秒前
千陽完成签到 ,获得积分10
13秒前
SYLH应助scizhu兰采纳,获得30
13秒前
16秒前
16秒前
彻底完成签到,获得积分10
21秒前
21秒前
yr完成签到 ,获得积分10
21秒前
枫泾完成签到,获得积分10
21秒前
22秒前
22秒前
彬彬爷888完成签到 ,获得积分10
23秒前
chuanyu发布了新的文献求助10
23秒前
organic tirrttf完成签到,获得积分10
23秒前
24秒前
阿敬发布了新的文献求助30
24秒前
柯氏气团不是气团完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954521
求助须知:如何正确求助?哪些是违规求助? 3500590
关于积分的说明 11100070
捐赠科研通 3231090
什么是DOI,文献DOI怎么找? 1786258
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719