Construction of a Diagnostic Model for Small Cell Lung Cancer Combining Metabolomics and Integrated Machine Learning

队列 代谢组学 脂类学 医学 内科学 肿瘤科 肺癌 阶段(地层学) 癌症 诊断模型 机器学习 生物信息学 生物 计算机科学 数据挖掘 古生物学
作者
Xiaoling Shang,Chenyue Zhang,Ronghua Kong,Chenglong Zhao,Haiyong Wang
出处
期刊:Oncologist [Wiley]
卷期号:29 (3): e392-e401 被引量:6
标识
DOI:10.1093/oncolo/oyad261
摘要

Abstract Background To date, no study has systematically explored the potential role of serum metabolites and lipids in the diagnosis of small cell lung cancer (SCLC). Therefore, we aimed to conduct a case-cohort study that included 191 cases of SCLC, 91 patients with lung adenocarcinoma, 82 patients with squamous cell carcinoma, and 97 healthy controls. Methods Metabolomics and lipidomics were applied to analyze different metabolites and lipids in the serum of these patients. The SCLC diagnosis model (d-model) was constructed using an integrated machine learning technology and a training cohort (n = 323) and was validated in a testing cohort (n=138). Results Eight metabolites, including 1-mristoyl-sn-glycero-3-phosphocholine, 16b-hydroxyestradiol, 3-phosphoserine, cholesteryl sulfate, D-lyxose, dioctyl phthalate, DL-lactate and Leu-Phe, were successfully selected to distinguish SCLC from controls. The d-model was constructed based on these 8 metabolites and showed improved diagnostic performance for SCLC, with the area under curve (AUC) of 0.933 in the training cohort and 0.922 in the testing cohort. Importantly, the d-model still had an excellent diagnostic performance after adjusting the stage and related clinical variables and, combined with the progastrin-releasing peptide (ProGRP), showed the best diagnostic performance with 0.975 of AUC for limited-stage patients. Conclusion This study is the first to analyze the difference between metabolomics and lipidomics and to construct a d-model to detect SCLC using integrated machine learning. This study may be of great significance for the screening and early diagnosis of SCLC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欧阳发布了新的文献求助10
1秒前
药叉完成签到,获得积分10
1秒前
happynewyear完成签到,获得积分10
1秒前
Savior发布了新的文献求助10
1秒前
zqingqing发布了新的文献求助10
1秒前
哎嘤斯坦发布了新的文献求助10
2秒前
1111完成签到,获得积分10
2秒前
4秒前
华仔应助FUsir采纳,获得10
4秒前
结实的凉面完成签到,获得积分20
4秒前
一水独流完成签到,获得积分10
5秒前
SciGPT应助Zzzzzzy采纳,获得10
5秒前
博尔塔拉发布了新的文献求助30
6秒前
7秒前
8秒前
8秒前
orixero应助结实的凉面采纳,获得10
8秒前
xx完成签到,获得积分10
8秒前
trans完成签到,获得积分10
9秒前
10秒前
顺利毕业完成签到,获得积分10
11秒前
hsyyk完成签到,获得积分10
11秒前
Uniibooy完成签到 ,获得积分10
11秒前
11秒前
Dannerys发布了新的文献求助10
13秒前
qh完成签到,获得积分20
13秒前
七七八八完成签到,获得积分10
13秒前
可爱的函函应助asd采纳,获得10
14秒前
14秒前
温暖芸发布了新的文献求助10
14秒前
直率的傲安完成签到,获得积分10
15秒前
16秒前
16秒前
斯文败类应助Viva采纳,获得10
17秒前
FUsir发布了新的文献求助10
19秒前
19秒前
满意的芷烟完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149617
求助须知:如何正确求助?哪些是违规求助? 2800663
关于积分的说明 7841062
捐赠科研通 2458157
什么是DOI,文献DOI怎么找? 1308340
科研通“疑难数据库(出版商)”最低求助积分说明 628479
版权声明 601706