Unveiling the Role of Charge Dilution and Anionic Chemistry in Enabling High-Rate p-Type Polymer Cathodes for Dual-Ion Batteries

氧化还原 化学 阴极 电解质 离子 无机化学 电极 有机化学 物理化学
作者
Linfeng Zhong,Yang Zhang,Jing Li,Long Fang,Cong Liu,Xiaotong Wang,Zishou Zhang,Dingshan Yu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:17 (18): 18190-18199 被引量:10
标识
DOI:10.1021/acsnano.3c05077
摘要

Herein, we introduce a p-type redox conjugated covalent organic polymer (p-PNZ) as a universal and high-rate cathode for diverse dual-ion batteries. By constructing an n-type redox counterpart (n-PNZ) with an analogous reticular structure and redox-site composition, we also attain a comparative platform to probe how the redox-site nature and counterion chemistry affect the rate performance of polymer cathodes. It is disclosed that the charge dilution in p-type redox sites and bulky anions engenders their weak interaction and rapid anion diffusion in electrodes, while the trivial interaction of the solvent with anions facilitates anion desolvation and interfacial charge transfer. Thus, p-PNZ possesses rapid surface-controlled redox kinetics with a high anion diffusion coefficient regardless of its inferior porosity and conductivity relative to n-PNZ. Along with a long cycle life of over 50000 cycles, the p-PNZ-engaged Zn-based dual-ion battery with a dilute electrolyte delivers nearly constant capacities of ∼149 mAh g-1 at various rates of ≤10 A g-1─such an unusual rate capability has rarely been observed previously─and retains ∼99 mAh g-1 at 40 A g-1, surpassing the n-PNZ counterpart and most existing p-type organic cathodes. The p-PNZ cathode can also be applied to build high-rate Li-based batteries, signifying its universality, while the "ready-to-charge" character of p-PNZ enables anode-free dual-ion batteries with a high-rate capability and long lifespan.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DTS发布了新的文献求助10
刚刚
刚刚
1851611453完成签到 ,获得积分10
1秒前
刘丰铭发布了新的文献求助10
1秒前
SciGPT应助jhonnyhuang采纳,获得10
1秒前
1秒前
3秒前
sunshine完成签到,获得积分10
3秒前
风清扬发布了新的文献求助10
3秒前
科研通AI6应助结实的栾采纳,获得10
3秒前
AskNature完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
13完成签到,获得积分20
4秒前
5秒前
5秒前
358489228发布了新的文献求助10
5秒前
Xiao完成签到,获得积分10
5秒前
Katherine完成签到 ,获得积分10
6秒前
Akim应助细心的飞柏采纳,获得10
6秒前
6秒前
默默发布了新的文献求助10
6秒前
7秒前
酷波er应助DTS采纳,获得10
7秒前
lixue发布了新的文献求助10
8秒前
8秒前
游大侠完成签到,获得积分10
8秒前
岑岑完成签到 ,获得积分10
8秒前
虎啊虎啊发布了新的文献求助10
9秒前
9秒前
Sandewna完成签到,获得积分20
9秒前
科研通AI6应助航迹云采纳,获得10
10秒前
标致书易完成签到,获得积分10
10秒前
11秒前
11秒前
dyw发布了新的文献求助10
12秒前
wen发布了新的文献求助10
12秒前
ZQH发布了新的文献求助10
12秒前
张雪芹完成签到,获得积分10
13秒前
一二完成签到,获得积分20
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802