亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automating Ground Truth Annotations for Gland Segmentation Through Immunohistochemistry

计算机科学 基本事实 人工智能 H&E染色 分割 免疫组织化学 病理 深度学习 腺癌 数字化病理学 活检 模式识别(心理学) 癌症 医学 内科学
作者
Tushar Kataria,Saradha Rajamani,Abdul Bari Ayubi,Mary P. Bronner,Jolanta Jedrzkiewicz,Beatrice S. Knudsen,Shireen Elhabian
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:36 (12): 100331-100331 被引量:4
标识
DOI:10.1016/j.modpat.2023.100331
摘要

Microscopic evaluation of glands in the colon is of utmost importance in the diagnosis of inflammatory bowel disease and cancer. When properly trained, deep learning pipelines can provide a systematic, reproducible, and quantitative assessment of disease-related changes in glandular tissue architecture. The training and testing of deep learning models require large amounts of manual annotations, which are difficult, time-consuming, and expensive to obtain. Here, we propose a method for automated generation of ground truth in digital hematoxylin and eosin (H&E)-stained slides using immunohistochemistry (IHC) labels. The image processing pipeline generates annotations of glands in H&E histopathology images from colon biopsy specimens by transfer of gland masks from KRT8/18, CDX2, or EPCAM IHC. The IHC gland outlines are transferred to coregistered H&E images for training of deep learning models. We compared the performance of the deep learning models to that of manual annotations using an internal held-out set of biopsy specimens as well as 2 public data sets. Our results show that EPCAM IHC provides gland outlines that closely match manual gland annotations (Dice = 0.89) and are resilient to damage by inflammation. In addition, we propose a simple data sampling technique that allows models trained on data from several sources to be adapted to a new data source using just a few newly annotated samples. The best performing models achieved average Dice scores of 0.902 and 0.89 on Gland Segmentation and Colorectal Adenocarcinoma Gland colon cancer public data sets, respectively, when trained with only 10% of annotated cases from either public cohort. Altogether, the performances of our models indicate that automated annotations using cell type-specific IHC markers can safely replace manual annotations. Automated IHC labels from single-institution cohorts can be combined with small numbers of hand-annotated cases from multi-institutional cohorts to train models that generalize well to diverse data sources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
23秒前
懒洋洋发布了新的文献求助10
28秒前
33秒前
aowulan完成签到 ,获得积分10
36秒前
bc应助懒洋洋采纳,获得10
37秒前
38秒前
玩命的鹤完成签到 ,获得积分10
43秒前
1分钟前
1分钟前
Marciu33发布了新的文献求助10
1分钟前
1分钟前
1分钟前
renxiaoting发布了新的文献求助10
1分钟前
懒洋洋发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
Lee发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Lee完成签到,获得积分10
2分钟前
俞绯发布了新的文献求助10
2分钟前
成就的乘云完成签到,获得积分10
2分钟前
慕青应助成就的乘云采纳,获得10
2分钟前
丘比特应助Forizix采纳,获得10
2分钟前
脑洞疼应助天真咖啡豆采纳,获得10
2分钟前
2分钟前
Forizix完成签到,获得积分10
3分钟前
Forizix发布了新的文献求助10
3分钟前
3分钟前
3分钟前
noss发布了新的文献求助10
3分钟前
脑洞疼应助飞快的紫雪采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
飞快的紫雪完成签到,获得积分10
3分钟前
bc完成签到,获得积分0
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770435
求助须知:如何正确求助?哪些是违规求助? 3315468
关于积分的说明 10176364
捐赠科研通 3030472
什么是DOI,文献DOI怎么找? 1662905
邀请新用户注册赠送积分活动 795232
科研通“疑难数据库(出版商)”最低求助积分说明 756698