Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing

流变学 表面粗糙度 材料科学 响应面法 墨水池 表面光洁度 生物高聚物 人工智能 机器学习 计算机科学 数学 复合材料 聚合物
作者
Yixing Lu,Rewa Rai,Nitin Nitin
出处
期刊:Food Research International [Elsevier BV]
卷期号:173: 113384-113384 被引量:1
标识
DOI:10.1016/j.foodres.2023.113384
摘要

Despite the growing demand and interest in 3D printing for food manufacturing, predicting printability of food-grade materials based on biopolymer composition and rheological properties is a significant challenge. This study developed two image-based printability assessment metrics: printed filaments' width and roughness and used these metrics to evaluate the printability of hydrogel-based food inks using response surface methodology (RSM) with regression analysis and machine learning. Rheological and compositional properties of food grade inks formulated using low-methoxyl pectin (LMP) and cellulose nanocrystals (CNC) with different ionic crosslinking densities were used as predictors of printability. RSM and linear regression showed good predictability of rheological properties based on formulation parameters but could not predict the printability metrics. For a machine learning based prediction model, the printability metrics were binarized with pre-specified thresholds and random forest classifiers were trained to predict the filament width and roughness labels, as well as the overall printability of the inks using formulation and rheological parameters. Without including formulation parameters, the models trained on rheological measurements alone were able to achieve high prediction accuracy: 82% for the width and roughness labels and 88% for the overall printability label, demonstrating the potential to predict printability of the polysaccharide inks developed in this study and to possibly generalize the models to food inks with different compositions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LiuDongqian发布了新的文献求助10
刚刚
弈心完成签到 ,获得积分10
1秒前
李小燕发布了新的文献求助10
1秒前
2秒前
2秒前
5秒前
大威天龙发布了新的文献求助10
6秒前
赘婿应助SMLW采纳,获得10
6秒前
7秒前
小古发布了新的文献求助10
8秒前
李爱国应助聪慧芷巧采纳,获得10
8秒前
Yasong发布了新的文献求助30
8秒前
B站萧亚轩发布了新的文献求助10
9秒前
木木完成签到 ,获得积分10
9秒前
123关注了科研通微信公众号
9秒前
Jasper应助果实采纳,获得10
9秒前
JUNJUN发布了新的文献求助100
12秒前
14秒前
抹茶泡泡完成签到 ,获得积分10
14秒前
14秒前
jivapar发布了新的文献求助10
15秒前
柠檬发布了新的文献求助10
17秒前
18秒前
shasha完成签到,获得积分10
18秒前
wdwd发布了新的文献求助10
19秒前
小星星发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
24秒前
24秒前
肉肉抱大腿完成签到,获得积分10
24秒前
古阿南完成签到 ,获得积分10
24秒前
25秒前
大威天龙发布了新的文献求助10
25秒前
26秒前
嘻嘻哈哈完成签到,获得积分10
26秒前
贰鸟应助枝枝采纳,获得10
26秒前
wdwd完成签到,获得积分10
27秒前
木易雨山发布了新的文献求助10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150