Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing

流变学 表面粗糙度 材料科学 响应面法 墨水池 表面光洁度 生物高聚物 人工智能 机器学习 计算机科学 数学 复合材料 聚合物
作者
Yixing Lu,Rewa Rai,Nitin Nitin
出处
期刊:Food Research International [Elsevier BV]
卷期号:173: 113384-113384 被引量:21
标识
DOI:10.1016/j.foodres.2023.113384
摘要

Despite the growing demand and interest in 3D printing for food manufacturing, predicting printability of food-grade materials based on biopolymer composition and rheological properties is a significant challenge. This study developed two image-based printability assessment metrics: printed filaments' width and roughness and used these metrics to evaluate the printability of hydrogel-based food inks using response surface methodology (RSM) with regression analysis and machine learning. Rheological and compositional properties of food grade inks formulated using low-methoxyl pectin (LMP) and cellulose nanocrystals (CNC) with different ionic crosslinking densities were used as predictors of printability. RSM and linear regression showed good predictability of rheological properties based on formulation parameters but could not predict the printability metrics. For a machine learning based prediction model, the printability metrics were binarized with pre-specified thresholds and random forest classifiers were trained to predict the filament width and roughness labels, as well as the overall printability of the inks using formulation and rheological parameters. Without including formulation parameters, the models trained on rheological measurements alone were able to achieve high prediction accuracy: 82% for the width and roughness labels and 88% for the overall printability label, demonstrating the potential to predict printability of the polysaccharide inks developed in this study and to possibly generalize the models to food inks with different compositions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwwc发布了新的文献求助10
1秒前
4秒前
4秒前
5秒前
孙涛完成签到,获得积分10
6秒前
DeepLearning发布了新的文献求助10
7秒前
小杭76应助yiqingfen采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
h_hellow发布了新的文献求助10
10秒前
白子双发布了新的文献求助10
10秒前
早早发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
korchid发布了新的文献求助20
12秒前
YanShaocheng发布了新的文献求助10
14秒前
12彡发布了新的文献求助10
15秒前
LY完成签到 ,获得积分10
15秒前
上官若男应助昀昀采纳,获得10
16秒前
17秒前
霞霞子完成签到 ,获得积分10
19秒前
caisongliang完成签到,获得积分10
19秒前
完美世界应助优雅的帅哥采纳,获得10
20秒前
烦烦烦完成签到,获得积分10
20秒前
luumuyu关注了科研通微信公众号
22秒前
TITANIUMJ关注了科研通微信公众号
23秒前
bb发布了新的文献求助10
24秒前
25秒前
25秒前
DeepLearning发布了新的文献求助10
27秒前
changping应助Maqian采纳,获得10
28秒前
syalonyui完成签到,获得积分10
28秒前
桐桐应助婷婷的大宝剑采纳,获得10
28秒前
量子星尘发布了新的文献求助10
29秒前
派大星完成签到 ,获得积分10
30秒前
仙峰水龙发布了新的文献求助10
30秒前
杨廷友发布了新的文献求助10
31秒前
31秒前
科研通AI5应助史杜旦腾采纳,获得10
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125878
求助须知:如何正确求助?哪些是违规求助? 4329554
关于积分的说明 13491294
捐赠科研通 4164468
什么是DOI,文献DOI怎么找? 2282962
邀请新用户注册赠送积分活动 1284016
关于科研通互助平台的介绍 1223406