Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing

流变学 表面粗糙度 材料科学 响应面法 墨水池 表面光洁度 生物高聚物 人工智能 机器学习 计算机科学 数学 复合材料 聚合物
作者
Yixing Lu,Rewa Rai,Nitin Nitin
出处
期刊:Food Research International [Elsevier]
卷期号:173 (Pt 2): 113384-113384 被引量:32
标识
DOI:10.1016/j.foodres.2023.113384
摘要

Despite the growing demand and interest in 3D printing for food manufacturing, predicting printability of food-grade materials based on biopolymer composition and rheological properties is a significant challenge. This study developed two image-based printability assessment metrics: printed filaments' width and roughness and used these metrics to evaluate the printability of hydrogel-based food inks using response surface methodology (RSM) with regression analysis and machine learning. Rheological and compositional properties of food grade inks formulated using low-methoxyl pectin (LMP) and cellulose nanocrystals (CNC) with different ionic crosslinking densities were used as predictors of printability. RSM and linear regression showed good predictability of rheological properties based on formulation parameters but could not predict the printability metrics. For a machine learning based prediction model, the printability metrics were binarized with pre-specified thresholds and random forest classifiers were trained to predict the filament width and roughness labels, as well as the overall printability of the inks using formulation and rheological parameters. Without including formulation parameters, the models trained on rheological measurements alone were able to achieve high prediction accuracy: 82% for the width and roughness labels and 88% for the overall printability label, demonstrating the potential to predict printability of the polysaccharide inks developed in this study and to possibly generalize the models to food inks with different compositions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shensiang完成签到,获得积分10
刚刚
David完成签到,获得积分10
刚刚
xxy完成签到,获得积分10
刚刚
wsy发布了新的文献求助10
1秒前
一口蒜苗完成签到,获得积分10
1秒前
xms完成签到,获得积分10
2秒前
星星完成签到,获得积分10
2秒前
2秒前
CipherSage应助SilenceKaris采纳,获得10
3秒前
David发布了新的文献求助10
3秒前
快乐吗猪完成签到,获得积分10
3秒前
3秒前
孙友浩发布了新的文献求助10
3秒前
bkagyin应助午后狂睡采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
YUZU完成签到,获得积分10
4秒前
英俊的铭应助slj采纳,获得10
4秒前
阿正嗖啪发布了新的文献求助10
5秒前
5秒前
6秒前
在水一方应助郭蓉洁采纳,获得10
7秒前
CipherSage应助可爱的乐松采纳,获得10
7秒前
7秒前
qian完成签到 ,获得积分10
7秒前
英姑应助凌晨里采纳,获得10
7秒前
8秒前
8秒前
djf完成签到,获得积分10
8秒前
xiao123发布了新的文献求助10
9秒前
kbj发布了新的文献求助10
9秒前
思源应助lwg采纳,获得10
9秒前
情怀应助合适的小馒头采纳,获得10
9秒前
10秒前
10秒前
在水一方应助wsy采纳,获得20
10秒前
唠叨的觅海完成签到,获得积分10
10秒前
11秒前
孙友浩发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578457
求助须知:如何正确求助?哪些是违规求助? 4663244
关于积分的说明 14745656
捐赠科研通 4604050
什么是DOI,文献DOI怎么找? 2526824
邀请新用户注册赠送积分活动 1496433
关于科研通互助平台的介绍 1465718