亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing

流变学 表面粗糙度 材料科学 响应面法 墨水池 表面光洁度 生物高聚物 人工智能 机器学习 计算机科学 数学 复合材料 聚合物
作者
Yixing Lu,Rewa Rai,Nitin Nitin
出处
期刊:Food Research International [Elsevier]
卷期号:173 (Pt 2): 113384-113384 被引量:32
标识
DOI:10.1016/j.foodres.2023.113384
摘要

Despite the growing demand and interest in 3D printing for food manufacturing, predicting printability of food-grade materials based on biopolymer composition and rheological properties is a significant challenge. This study developed two image-based printability assessment metrics: printed filaments' width and roughness and used these metrics to evaluate the printability of hydrogel-based food inks using response surface methodology (RSM) with regression analysis and machine learning. Rheological and compositional properties of food grade inks formulated using low-methoxyl pectin (LMP) and cellulose nanocrystals (CNC) with different ionic crosslinking densities were used as predictors of printability. RSM and linear regression showed good predictability of rheological properties based on formulation parameters but could not predict the printability metrics. For a machine learning based prediction model, the printability metrics were binarized with pre-specified thresholds and random forest classifiers were trained to predict the filament width and roughness labels, as well as the overall printability of the inks using formulation and rheological parameters. Without including formulation parameters, the models trained on rheological measurements alone were able to achieve high prediction accuracy: 82% for the width and roughness labels and 88% for the overall printability label, demonstrating the potential to predict printability of the polysaccharide inks developed in this study and to possibly generalize the models to food inks with different compositions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助YNHN采纳,获得10
3秒前
研究XPD的小麻薯完成签到,获得积分10
11秒前
bkagyin应助安芳采纳,获得10
14秒前
17秒前
哈哈我发布了新的文献求助10
20秒前
20秒前
自行车发布了新的文献求助30
20秒前
22秒前
自行车完成签到,获得积分10
26秒前
26秒前
34秒前
37秒前
迷路平安发布了新的文献求助10
39秒前
42秒前
英姑应助迷路平安采纳,获得10
47秒前
邬美杰发布了新的文献求助10
50秒前
Criminology34应助科研通管家采纳,获得10
59秒前
ceeray23应助科研通管家采纳,获得10
59秒前
Criminology34应助科研通管家采纳,获得10
59秒前
liutao应助科研通管家采纳,获得10
59秒前
迷路平安完成签到,获得积分10
1分钟前
1分钟前
1分钟前
落寞惮发布了新的文献求助10
1分钟前
1分钟前
1分钟前
123发布了新的文献求助10
1分钟前
Omni完成签到,获得积分10
1分钟前
1分钟前
无私文博发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Viiigo完成签到,获得积分10
1分钟前
汉堡包应助落寞惮采纳,获得10
1分钟前
1分钟前
imcwj完成签到 ,获得积分10
1分钟前
英姑应助123采纳,获得10
1分钟前
邬美杰发布了新的文献求助10
1分钟前
2分钟前
领导范儿应助邬美杰采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650903
求助须知:如何正确求助?哪些是违规求助? 4782013
关于积分的说明 15052718
捐赠科研通 4809666
什么是DOI,文献DOI怎么找? 2572478
邀请新用户注册赠送积分活动 1528514
关于科研通互助平台的介绍 1487478