Hydraulic Tomography Estimates Improved by Zonal Information From the Clustering of Geophysical Survey Data

聚类分析 地质学 钻孔 地球物理学 断层摄影术 地质统计学 电阻率层析成像 反演(地质) 空间变异性 岩石物理学 地震学 计算机科学 岩土工程 数学 机器学习 统计 工程类 物理 电气工程 多孔性 光学 电阻率和电导率 构造学
作者
Chenxi Wang,Walter A. Illman
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (9) 被引量:3
标识
DOI:10.1029/2023wr035191
摘要

Abstract Hydraulic tomography (HT) has been demonstrated as a robust approach to characterize subsurface heterogeneity through the inverse modeling of multiple pumping data. However, smooth or even erroneous tomograms can result when insufficient observations are involved in the inversion. In this study, the feasibility of integrating geophysical survey data into HT analysis is investigated. First, k ‐means clustering is utilized to extract zonal information from borehole geophysical logs, and a new type of spatial constraints containing geological knowledge is proposed to obtain improved hydrostratigraphic boundaries along boreholes. Next, zonation models are constructed by applying clustering‐based zone geometry and populating zonal estimates of hydraulic conductivity ( K ) from analyzing pumping data. Afterwards, zonation models are treated as the initial guess of spatial variability in the geostatistical inversion of HT analysis. Additionally, local K measurements can be utilized to further improve HT estimates. Comparative cases of HT analyses are designed for a numerical sandbox experiment to highlight the HT performance integrated with geophysical surveys, in which the geostatistical inversion is initialized with: (a) a homogeneous K field; (b) zonation models built by the clustering of disparate geophysical surveys with/without spatial constraints; and (c) zonation improved by incorporating local K measurements. Based on ln K field comparisons and validation through predictions of drawdowns and tracer plume migration from independent tests not used in the calibration effort, we find that integration of geophysical surveys into HT analysis by clustering with spatial constraints is demonstrated as an effective approach, and local K measurements can further improve HT estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助Areslcy采纳,获得10
刚刚
善学以致用应助zxz采纳,获得10
1秒前
whatever应助luoshi采纳,获得10
2秒前
2秒前
科研通AI5应助徐徐采纳,获得10
3秒前
shouyu29应助MADKAI采纳,获得10
3秒前
shouyu29应助MADKAI采纳,获得10
3秒前
Lucas应助MADKAI采纳,获得10
3秒前
Vii应助MADKAI采纳,获得10
3秒前
李爱国应助MADKAI采纳,获得10
3秒前
李健应助MADKAI采纳,获得10
3秒前
烟花应助MADKAI采纳,获得20
3秒前
香蕉觅云应助MADKAI采纳,获得10
3秒前
科研通AI2S应助MADKAI采纳,获得10
3秒前
Singularity应助MADKAI采纳,获得10
3秒前
4秒前
4秒前
赘婿应助GGZ采纳,获得10
4秒前
阿盛完成签到,获得积分10
4秒前
4秒前
怕孤单的含羞草完成签到 ,获得积分10
5秒前
Muuu发布了新的文献求助10
5秒前
仁爱的乐枫完成签到,获得积分10
6秒前
6秒前
金润完成签到,获得积分10
7秒前
ZZ完成签到,获得积分10
7秒前
AteeqBaloch发布了新的文献求助10
8秒前
PaulLao完成签到,获得积分10
8秒前
8秒前
fleee发布了新的文献求助10
8秒前
8秒前
9秒前
Luyao发布了新的文献求助10
9秒前
海派Hi完成签到 ,获得积分10
9秒前
依依完成签到 ,获得积分10
10秒前
李健的小迷弟应助库外采纳,获得10
10秒前
yi完成签到 ,获得积分10
10秒前
kbj发布了新的文献求助10
10秒前
12秒前
佳言2009完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762