Hydraulic Tomography Estimates Improved by Zonal Information From the Clustering of Geophysical Survey Data

聚类分析 地质学 钻孔 地球物理学 断层摄影术 地质统计学 电阻率层析成像 反演(地质) 空间变异性 岩石物理学 地震学 计算机科学 岩土工程 数学 机器学习 统计 工程类 物理 电气工程 多孔性 光学 电阻率和电导率 构造学
作者
Chenxi Wang,Walter A. Illman
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (9) 被引量:3
标识
DOI:10.1029/2023wr035191
摘要

Abstract Hydraulic tomography (HT) has been demonstrated as a robust approach to characterize subsurface heterogeneity through the inverse modeling of multiple pumping data. However, smooth or even erroneous tomograms can result when insufficient observations are involved in the inversion. In this study, the feasibility of integrating geophysical survey data into HT analysis is investigated. First, k ‐means clustering is utilized to extract zonal information from borehole geophysical logs, and a new type of spatial constraints containing geological knowledge is proposed to obtain improved hydrostratigraphic boundaries along boreholes. Next, zonation models are constructed by applying clustering‐based zone geometry and populating zonal estimates of hydraulic conductivity ( K ) from analyzing pumping data. Afterwards, zonation models are treated as the initial guess of spatial variability in the geostatistical inversion of HT analysis. Additionally, local K measurements can be utilized to further improve HT estimates. Comparative cases of HT analyses are designed for a numerical sandbox experiment to highlight the HT performance integrated with geophysical surveys, in which the geostatistical inversion is initialized with: (a) a homogeneous K field; (b) zonation models built by the clustering of disparate geophysical surveys with/without spatial constraints; and (c) zonation improved by incorporating local K measurements. Based on ln K field comparisons and validation through predictions of drawdowns and tracer plume migration from independent tests not used in the calibration effort, we find that integration of geophysical surveys into HT analysis by clustering with spatial constraints is demonstrated as an effective approach, and local K measurements can further improve HT estimates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘可愁完成签到,获得积分10
刚刚
跳跃的翼发布了新的文献求助10
1秒前
2秒前
无花果应助加百莉采纳,获得10
5秒前
6秒前
Wqian发布了新的文献求助10
7秒前
10秒前
11秒前
CipherSage应助朴素的松采纳,获得10
11秒前
香菜大王完成签到 ,获得积分10
12秒前
Quanta发布了新的文献求助10
12秒前
嘻嘻哈哈发布了新的文献求助10
14秒前
15秒前
深情安青应助keyanxiaobaishu采纳,获得10
16秒前
inter发布了新的文献求助10
17秒前
SnownS发布了新的文献求助20
20秒前
21秒前
orixero应助杰果采纳,获得10
22秒前
26秒前
27秒前
bkagyin应助蓝莓西西果冻采纳,获得10
27秒前
Jodie发布了新的文献求助10
28秒前
机灵冥发布了新的文献求助10
28秒前
慕青应助朴素的松采纳,获得10
30秒前
加百莉发布了新的文献求助10
32秒前
Fitz完成签到,获得积分10
33秒前
王美美发布了新的文献求助10
37秒前
科研通AI6应助good采纳,获得10
38秒前
科研通AI6应助小巧的蓝血采纳,获得30
39秒前
尔玉完成签到 ,获得积分10
41秒前
科研通AI6应助华杰采纳,获得10
44秒前
呜呜完成签到 ,获得积分10
50秒前
欢喜的代容完成签到,获得积分10
50秒前
华仔应助动听的涵山采纳,获得10
50秒前
52秒前
孙乐777完成签到,获得积分10
54秒前
田様应助echo采纳,获得10
54秒前
王美美发布了新的文献求助10
56秒前
56秒前
小化化爱学习完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550