Hydraulic Tomography Estimates Improved by Zonal Information From the Clustering of Geophysical Survey Data

聚类分析 地质学 钻孔 地球物理学 断层摄影术 地质统计学 电阻率层析成像 反演(地质) 空间变异性 岩石物理学 地震学 计算机科学 岩土工程 数学 机器学习 统计 工程类 物理 电气工程 多孔性 光学 电阻率和电导率 构造学
作者
Chenxi Wang,Walter A. Illman
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (9) 被引量:3
标识
DOI:10.1029/2023wr035191
摘要

Abstract Hydraulic tomography (HT) has been demonstrated as a robust approach to characterize subsurface heterogeneity through the inverse modeling of multiple pumping data. However, smooth or even erroneous tomograms can result when insufficient observations are involved in the inversion. In this study, the feasibility of integrating geophysical survey data into HT analysis is investigated. First, k ‐means clustering is utilized to extract zonal information from borehole geophysical logs, and a new type of spatial constraints containing geological knowledge is proposed to obtain improved hydrostratigraphic boundaries along boreholes. Next, zonation models are constructed by applying clustering‐based zone geometry and populating zonal estimates of hydraulic conductivity ( K ) from analyzing pumping data. Afterwards, zonation models are treated as the initial guess of spatial variability in the geostatistical inversion of HT analysis. Additionally, local K measurements can be utilized to further improve HT estimates. Comparative cases of HT analyses are designed for a numerical sandbox experiment to highlight the HT performance integrated with geophysical surveys, in which the geostatistical inversion is initialized with: (a) a homogeneous K field; (b) zonation models built by the clustering of disparate geophysical surveys with/without spatial constraints; and (c) zonation improved by incorporating local K measurements. Based on ln K field comparisons and validation through predictions of drawdowns and tracer plume migration from independent tests not used in the calibration effort, we find that integration of geophysical surveys into HT analysis by clustering with spatial constraints is demonstrated as an effective approach, and local K measurements can further improve HT estimates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智紫寒发布了新的文献求助10
2秒前
开心最重要完成签到,获得积分10
4秒前
5秒前
7秒前
亦安发布了新的文献求助10
7秒前
平常书本完成签到 ,获得积分10
8秒前
8秒前
9秒前
初夏发布了新的文献求助10
10秒前
jia完成签到 ,获得积分10
10秒前
11秒前
慕青应助包子采纳,获得10
11秒前
wangayting发布了新的文献求助30
12秒前
Ma发布了新的文献求助30
14秒前
李白发布了新的文献求助10
16秒前
光亮千易完成签到,获得积分10
16秒前
百变毛毛完成签到 ,获得积分10
17秒前
Orange应助给大佬递茶采纳,获得10
18秒前
小刘完成签到,获得积分10
19秒前
无舟完成签到,获得积分10
20秒前
华子的五A替身完成签到,获得积分10
20秒前
21秒前
23秒前
包子完成签到,获得积分20
23秒前
完美世界应助务实的大神采纳,获得10
23秒前
Lu完成签到,获得积分10
25秒前
CodeCraft应助东京芝士123采纳,获得10
27秒前
xiejinhui发布了新的文献求助10
28秒前
29秒前
果果关注了科研通微信公众号
29秒前
缓慢的可乐完成签到,获得积分10
31秒前
隐形曼青应助无舟采纳,获得10
34秒前
葡萄成熟完成签到,获得积分10
36秒前
钱钱钱完成签到,获得积分10
36秒前
weishen完成签到,获得积分0
37秒前
剧院的饭桶完成签到,获得积分10
38秒前
英俊的铭应助Ma采纳,获得10
38秒前
爆米花应助xiejinhui采纳,获得10
39秒前
Qiao发布了新的文献求助10
41秒前
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962523
求助须知:如何正确求助?哪些是违规求助? 3508549
关于积分的说明 11141583
捐赠科研通 3241262
什么是DOI,文献DOI怎么找? 1791486
邀请新用户注册赠送积分活动 872876
科研通“疑难数据库(出版商)”最低求助积分说明 803474