Optimizing Perovskite Thin‐Film Parameter Spaces with Machine Learning‐Guided Robotic Platform for High‐Performance Perovskite Solar Cells

材料科学 贝叶斯优化 薄膜 钙钛矿(结构) 计算机科学 表征(材料科学) 人工智能 工艺优化 再现性 过程(计算) 纳米技术 机器学习 工艺工程 化学工程 工程类 操作系统 统计 数学
作者
Jiyun Zhang,Bowen Liu,Ziyi Liu,Jianchang Wu,Simon Arnold,Hongyang Shi,Tobias Osterrieder,Jens Hauch,Zhenni Wu,Junsheng Luo,Jerrit Wagner,Christian Berger,Tobias Stubhan,F. Schmitt,Kaicheng Zhang,Mykhailo Sytnyk,Thomas Heumueller,Carolin M. Sutter‐Fella,Ian Marius Peters,Yicheng Zhao
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (48) 被引量:26
标识
DOI:10.1002/aenm.202302594
摘要

Abstract Simultaneously optimizing the processing parameters of functional thin films remains a challenge. The design and utilization of a fully automated platform called SPINBOT is presented for the engineering of solution‐processed functional thin films. The SPINBOT is capable of performing experiments with high sampling variability through the unsupervised processing of hundreds of substrates with exceptional experimental control. Through the iterative optimization process enabled by the Bayesian optimization (BO) algorithm, the SPINBOT explores an intricate parameter space, continuously improving the quality and reproducibility of the produced thin films. This machine learning (ML)‐guided reliable SPINBOT platform enables the acceleration of the optimization process of perovskite solar cells via a simple photoluminescence characterization of films. As a result, this study arrives at an optimal film that, when processed into a solar cell in an ambient atmosphere, immediately yields a champion power conversion efficiency (PCE) of 21.6% with satisfactory performance reproducibility. The unsealed devices retain 90% of their initial efficiency after 1100 h of continuous operation at 60–65 °C under metal‐halide lamps. It is anticipated that the integration of robotic platforms with the intelligent algorithm will facilitate the widespread adoption of effective autonomous experimentation to address the evolving needs and constraints within the materials science research community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沉默乐荷完成签到,获得积分10
刚刚
rstorz应助皮尤尤采纳,获得10
刚刚
sweetbearm应助小离采纳,获得10
刚刚
何青岚关注了科研通微信公众号
1秒前
doudou完成签到,获得积分20
1秒前
李健的小迷弟应助潦草采纳,获得10
1秒前
2秒前
2秒前
2秒前
柒八染完成签到,获得积分10
2秒前
wsljc134完成签到,获得积分20
2秒前
3秒前
善良香岚完成签到,获得积分20
3秒前
3秒前
3秒前
123发布了新的文献求助10
3秒前
3秒前
不安太阳完成签到,获得积分10
4秒前
t_suo完成签到,获得积分10
4秒前
bioinforiver完成签到,获得积分10
4秒前
乐观跳跳糖完成签到,获得积分10
4秒前
4秒前
WxChen发布了新的文献求助10
5秒前
5秒前
酷炫的香魔完成签到,获得积分10
5秒前
5秒前
5秒前
NexusExplorer应助无奈满天采纳,获得10
5秒前
qwt_hello完成签到,获得积分10
5秒前
5秒前
海涛完成签到,获得积分10
6秒前
星星发布了新的文献求助10
7秒前
qq完成签到,获得积分10
7秒前
7秒前
7秒前
中央戏精学院完成签到,获得积分10
7秒前
寒冷依秋完成签到,获得积分10
7秒前
彭于晏应助jogrgr采纳,获得10
7秒前
思源应助momo采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759