Machine learning–based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease

特征选择 机器学习 人工智能 理论(学习稳定性) 计算机科学 生物标志物发现 特征(语言学) 模式识别(心理学) 感知器 微生物群 数据挖掘 生物信息学 人工神经网络 生物 生物化学 语言学 哲学 蛋白质组学 基因
作者
Youngro Lee,Marco Cappellato,Barbara Di Camillo
出处
期刊:GigaScience [Oxford University Press]
卷期号:12 被引量:3
标识
DOI:10.1093/gigascience/giad083
摘要

Abstract Background Biomarker discovery exploiting feature importance of machine learning has risen recently in the microbiome landscape with its high predictive performance in several disease states. To have a concrete selection among a high number of features, recursive feature elimination (RFE) has been widely used in the bioinformatics field. However, machine learning–based RFE has factors that decrease the stability of feature selection. In this article, we suggested methods to improve stability while sustaining performance. Results We exploited the abundance matrices of the gut microbiome (283 taxa at species level and 220 at genus level) to classify between patients with inflammatory bowel disease (IBD) and healthy control (1,569 samples). We found that applying an already published data transformation before RFE improves feature stability significantly. Moreover, we performed an in-depth evaluation of different variants of the data transformation and identify those that demonstrate better improvement in stability while not sacrificing classification performance. To ensure a robust comparison, we evaluated stability using various similarity metrics, distances, the common number of features, and the ability to filter out noise features. We were able to confirm that the mapping by the Bray–Curtis similarity matrix before RFE consistently improves the stability while maintaining good performance. Multilayer perceptron algorithm exhibited the highest performance among 8 different machine learning algorithms when a large number of features (a few hundred) were considered based on the best performance across 100 bootstrapped internal test sets. Conversely, when utilizing only a limited number of biomarkers as a trade-off between optimal performance and method generalizability, the random forest algorithm demonstrated the best performance. Using the optimal pipeline we developed, we identified 14 biomarkers for IBD at the species level and analyzed their roles using Shapley additive explanations. Conclusion Taken together, our work not only showed how to improve biomarker discovery in the metataxonomic field without sacrificing classification performance but also provided useful insights for future comparative studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助笨笨凡松采纳,获得10
刚刚
1秒前
2秒前
2秒前
CipherSage应助zhuojiu采纳,获得10
4秒前
4秒前
大闲鱼铭一完成签到 ,获得积分10
4秒前
哦哦哦完成签到,获得积分10
5秒前
6秒前
繁荣的从露完成签到,获得积分10
7秒前
8秒前
啊喔完成签到,获得积分20
9秒前
慕青应助jack采纳,获得10
10秒前
11秒前
团子发布了新的文献求助10
12秒前
12秒前
闲之野鹤完成签到,获得积分10
13秒前
健忘向露关注了科研通微信公众号
13秒前
wy.he应助易安采纳,获得10
14秒前
H_完成签到 ,获得积分10
15秒前
Lesley完成签到 ,获得积分10
15秒前
16秒前
16秒前
17秒前
甜甜奇迹发布了新的文献求助10
18秒前
完美世界应助十分喜欢采纳,获得10
18秒前
20秒前
keep完成签到 ,获得积分10
20秒前
科研通AI6应助啊喔采纳,获得10
20秒前
23秒前
25秒前
浮游应助丝竹丛中墨未干采纳,获得10
26秒前
灿灿发布了新的文献求助20
27秒前
Jie完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
28秒前
上官若男应助Cyuan采纳,获得10
29秒前
31秒前
31秒前
甜甜奇迹完成签到,获得积分10
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759