Machine learning–based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease

特征选择 机器学习 人工智能 理论(学习稳定性) 计算机科学 生物标志物发现 特征(语言学) 模式识别(心理学) 感知器 微生物群 数据挖掘 生物信息学 人工神经网络 生物 基因 生物化学 哲学 蛋白质组学 语言学
作者
Youngro Lee,Marco Cappellato,Barbara Di Camillo
出处
期刊:GigaScience [Oxford University Press]
卷期号:12 被引量:3
标识
DOI:10.1093/gigascience/giad083
摘要

Abstract Background Biomarker discovery exploiting feature importance of machine learning has risen recently in the microbiome landscape with its high predictive performance in several disease states. To have a concrete selection among a high number of features, recursive feature elimination (RFE) has been widely used in the bioinformatics field. However, machine learning–based RFE has factors that decrease the stability of feature selection. In this article, we suggested methods to improve stability while sustaining performance. Results We exploited the abundance matrices of the gut microbiome (283 taxa at species level and 220 at genus level) to classify between patients with inflammatory bowel disease (IBD) and healthy control (1,569 samples). We found that applying an already published data transformation before RFE improves feature stability significantly. Moreover, we performed an in-depth evaluation of different variants of the data transformation and identify those that demonstrate better improvement in stability while not sacrificing classification performance. To ensure a robust comparison, we evaluated stability using various similarity metrics, distances, the common number of features, and the ability to filter out noise features. We were able to confirm that the mapping by the Bray–Curtis similarity matrix before RFE consistently improves the stability while maintaining good performance. Multilayer perceptron algorithm exhibited the highest performance among 8 different machine learning algorithms when a large number of features (a few hundred) were considered based on the best performance across 100 bootstrapped internal test sets. Conversely, when utilizing only a limited number of biomarkers as a trade-off between optimal performance and method generalizability, the random forest algorithm demonstrated the best performance. Using the optimal pipeline we developed, we identified 14 biomarkers for IBD at the species level and analyzed their roles using Shapley additive explanations. Conclusion Taken together, our work not only showed how to improve biomarker discovery in the metataxonomic field without sacrificing classification performance but also provided useful insights for future comparative studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
打打应助火火采纳,获得10
2秒前
orchid发布了新的文献求助10
2秒前
3秒前
3秒前
神勇冬莲完成签到 ,获得积分10
4秒前
黎书禾完成签到,获得积分10
4秒前
晚若旧发布了新的文献求助10
5秒前
175完成签到,获得积分10
5秒前
6秒前
6秒前
十七发布了新的文献求助10
6秒前
文静修杰完成签到 ,获得积分10
6秒前
7秒前
junet完成签到,获得积分10
8秒前
无名完成签到,获得积分10
8秒前
Costing完成签到,获得积分10
10秒前
sober发布了新的文献求助30
11秒前
hzauhzau完成签到 ,获得积分10
11秒前
小谢不谢完成签到,获得积分10
11秒前
小杭76应助goldNAN采纳,获得10
12秒前
12秒前
苗雅宁发布了新的文献求助30
14秒前
maopf发布了新的文献求助10
14秒前
15秒前
15秒前
JN发布了新的文献求助10
15秒前
白耀庭完成签到,获得积分10
16秒前
xiaoguo完成签到,获得积分10
17秒前
时尚蜻蜓发布了新的文献求助10
17秒前
18秒前
答题不卡完成签到,获得积分10
18秒前
科研通AI6应助likke采纳,获得10
19秒前
852应助wgnahoa采纳,获得10
20秒前
的的完成签到,获得积分10
21秒前
老实醉冬发布了新的文献求助10
22秒前
归尘发布了新的文献求助10
22秒前
没有答案发布了新的文献求助10
23秒前
23秒前
HXL完成签到,获得积分20
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342693
求助须知:如何正确求助?哪些是违规求助? 4478514
关于积分的说明 13939615
捐赠科研通 4375193
什么是DOI,文献DOI怎么找? 2404016
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368768