Machine learning–based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease

特征选择 机器学习 人工智能 理论(学习稳定性) 计算机科学 生物标志物发现 特征(语言学) 模式识别(心理学) 感知器 微生物群 数据挖掘 生物信息学 人工神经网络 生物 生物化学 语言学 哲学 蛋白质组学 基因
作者
Youngro Lee,Marco Cappellato,Barbara Di Camillo
出处
期刊:GigaScience [Oxford University Press]
卷期号:12 被引量:3
标识
DOI:10.1093/gigascience/giad083
摘要

Abstract Background Biomarker discovery exploiting feature importance of machine learning has risen recently in the microbiome landscape with its high predictive performance in several disease states. To have a concrete selection among a high number of features, recursive feature elimination (RFE) has been widely used in the bioinformatics field. However, machine learning–based RFE has factors that decrease the stability of feature selection. In this article, we suggested methods to improve stability while sustaining performance. Results We exploited the abundance matrices of the gut microbiome (283 taxa at species level and 220 at genus level) to classify between patients with inflammatory bowel disease (IBD) and healthy control (1,569 samples). We found that applying an already published data transformation before RFE improves feature stability significantly. Moreover, we performed an in-depth evaluation of different variants of the data transformation and identify those that demonstrate better improvement in stability while not sacrificing classification performance. To ensure a robust comparison, we evaluated stability using various similarity metrics, distances, the common number of features, and the ability to filter out noise features. We were able to confirm that the mapping by the Bray–Curtis similarity matrix before RFE consistently improves the stability while maintaining good performance. Multilayer perceptron algorithm exhibited the highest performance among 8 different machine learning algorithms when a large number of features (a few hundred) were considered based on the best performance across 100 bootstrapped internal test sets. Conversely, when utilizing only a limited number of biomarkers as a trade-off between optimal performance and method generalizability, the random forest algorithm demonstrated the best performance. Using the optimal pipeline we developed, we identified 14 biomarkers for IBD at the species level and analyzed their roles using Shapley additive explanations. Conclusion Taken together, our work not only showed how to improve biomarker discovery in the metataxonomic field without sacrificing classification performance but also provided useful insights for future comparative studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sak完成签到,获得积分10
刚刚
Shuo Yang发布了新的文献求助20
刚刚
呜呜呜呜发布了新的文献求助10
刚刚
在水一方应助hhzz采纳,获得10
刚刚
旧是完成签到 ,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
杨小胖完成签到 ,获得积分10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
mm发布了新的文献求助10
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
shouyu29应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
RC_Wang应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
归海含烟完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
shire应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
匹诺曹发布了新的文献求助10
4秒前
唐画完成签到 ,获得积分10
4秒前
4秒前
4秒前
淡淡采白关注了科研通微信公众号
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808