Machine learning–based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease

特征选择 机器学习 人工智能 理论(学习稳定性) 计算机科学 生物标志物发现 特征(语言学) 模式识别(心理学) 感知器 微生物群 数据挖掘 生物信息学 人工神经网络 生物 基因 生物化学 哲学 蛋白质组学 语言学
作者
Youngro Lee,Marco Cappellato,Barbara Di Camillo
出处
期刊:GigaScience [Oxford University Press]
卷期号:12 被引量:3
标识
DOI:10.1093/gigascience/giad083
摘要

Abstract Background Biomarker discovery exploiting feature importance of machine learning has risen recently in the microbiome landscape with its high predictive performance in several disease states. To have a concrete selection among a high number of features, recursive feature elimination (RFE) has been widely used in the bioinformatics field. However, machine learning–based RFE has factors that decrease the stability of feature selection. In this article, we suggested methods to improve stability while sustaining performance. Results We exploited the abundance matrices of the gut microbiome (283 taxa at species level and 220 at genus level) to classify between patients with inflammatory bowel disease (IBD) and healthy control (1,569 samples). We found that applying an already published data transformation before RFE improves feature stability significantly. Moreover, we performed an in-depth evaluation of different variants of the data transformation and identify those that demonstrate better improvement in stability while not sacrificing classification performance. To ensure a robust comparison, we evaluated stability using various similarity metrics, distances, the common number of features, and the ability to filter out noise features. We were able to confirm that the mapping by the Bray–Curtis similarity matrix before RFE consistently improves the stability while maintaining good performance. Multilayer perceptron algorithm exhibited the highest performance among 8 different machine learning algorithms when a large number of features (a few hundred) were considered based on the best performance across 100 bootstrapped internal test sets. Conversely, when utilizing only a limited number of biomarkers as a trade-off between optimal performance and method generalizability, the random forest algorithm demonstrated the best performance. Using the optimal pipeline we developed, we identified 14 biomarkers for IBD at the species level and analyzed their roles using Shapley additive explanations. Conclusion Taken together, our work not only showed how to improve biomarker discovery in the metataxonomic field without sacrificing classification performance but also provided useful insights for future comparative studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RUI1128发布了新的文献求助10
3秒前
豆豆发布了新的文献求助10
3秒前
5秒前
6秒前
7秒前
脑洞大开发布了新的文献求助10
7秒前
wuhu发布了新的文献求助10
9秒前
guyuangyy完成签到,获得积分10
9秒前
平淡的梦菲完成签到,获得积分10
11秒前
11秒前
dongdong完成签到,获得积分20
12秒前
13秒前
科研小尹完成签到,获得积分20
13秒前
循环完成签到,获得积分10
13秒前
14秒前
雨后发布了新的文献求助20
14秒前
plusweng完成签到 ,获得积分10
16秒前
mignonettely发布了新的文献求助10
16秒前
hh发布了新的文献求助10
17秒前
一顿鸡米花完成签到,获得积分10
17秒前
clyde凌丫完成签到 ,获得积分10
18秒前
天一发布了新的文献求助10
19秒前
明理吐司完成签到,获得积分10
20秒前
踏实孤容完成签到,获得积分10
21秒前
一颗好困芽完成签到 ,获得积分10
22秒前
上官若男应助aichan采纳,获得10
23秒前
星辰大海应助nostalgic采纳,获得10
25秒前
豆豆完成签到,获得积分10
25秒前
han完成签到,获得积分10
25秒前
27秒前
祎祎完成签到,获得积分10
28秒前
hh完成签到,获得积分10
30秒前
30秒前
一一发布了新的文献求助10
31秒前
buerger完成签到,获得积分10
32秒前
Peppermint完成签到,获得积分10
32秒前
mujianhua完成签到,获得积分20
32秒前
32秒前
33秒前
共享精神应助JingP采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600866
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843743
捐赠科研通 4678603
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241