Machine learning–based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease

特征选择 机器学习 人工智能 理论(学习稳定性) 计算机科学 生物标志物发现 特征(语言学) 模式识别(心理学) 感知器 微生物群 数据挖掘 生物信息学 人工神经网络 生物 生物化学 语言学 哲学 蛋白质组学 基因
作者
Youngro Lee,Marco Cappellato,Barbara Di Camillo
出处
期刊:GigaScience [Oxford University Press]
卷期号:12 被引量:3
标识
DOI:10.1093/gigascience/giad083
摘要

Abstract Background Biomarker discovery exploiting feature importance of machine learning has risen recently in the microbiome landscape with its high predictive performance in several disease states. To have a concrete selection among a high number of features, recursive feature elimination (RFE) has been widely used in the bioinformatics field. However, machine learning–based RFE has factors that decrease the stability of feature selection. In this article, we suggested methods to improve stability while sustaining performance. Results We exploited the abundance matrices of the gut microbiome (283 taxa at species level and 220 at genus level) to classify between patients with inflammatory bowel disease (IBD) and healthy control (1,569 samples). We found that applying an already published data transformation before RFE improves feature stability significantly. Moreover, we performed an in-depth evaluation of different variants of the data transformation and identify those that demonstrate better improvement in stability while not sacrificing classification performance. To ensure a robust comparison, we evaluated stability using various similarity metrics, distances, the common number of features, and the ability to filter out noise features. We were able to confirm that the mapping by the Bray–Curtis similarity matrix before RFE consistently improves the stability while maintaining good performance. Multilayer perceptron algorithm exhibited the highest performance among 8 different machine learning algorithms when a large number of features (a few hundred) were considered based on the best performance across 100 bootstrapped internal test sets. Conversely, when utilizing only a limited number of biomarkers as a trade-off between optimal performance and method generalizability, the random forest algorithm demonstrated the best performance. Using the optimal pipeline we developed, we identified 14 biomarkers for IBD at the species level and analyzed their roles using Shapley additive explanations. Conclusion Taken together, our work not only showed how to improve biomarker discovery in the metataxonomic field without sacrificing classification performance but also provided useful insights for future comparative studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hss完成签到 ,获得积分10
3秒前
研友_LkYldZ完成签到,获得积分10
3秒前
玩具销售员完成签到,获得积分20
5秒前
6秒前
Djdidn完成签到,获得积分10
8秒前
kenna123发布了新的文献求助10
8秒前
h嘿发布了新的文献求助10
11秒前
希望天下0贩的0应助kenna123采纳,获得10
14秒前
15秒前
honger完成签到,获得积分10
15秒前
小马甲应助胖儿采纳,获得10
18秒前
puyehwu完成签到,获得积分10
19秒前
orixero应助Naomi-yu采纳,获得10
19秒前
斯文败类应助h嘿采纳,获得10
20秒前
可爱的函函应助旅游团采纳,获得10
20秒前
大学士完成签到,获得积分10
21秒前
22秒前
22秒前
Phd侯完成签到,获得积分20
23秒前
细心的逍遥完成签到,获得积分10
24秒前
对对对发布了新的文献求助10
25秒前
馋馋完成签到,获得积分10
25秒前
白河夜船完成签到,获得积分10
26秒前
所所应助Cloud采纳,获得10
27秒前
冷酷愚志完成签到,获得积分10
28秒前
29秒前
31秒前
行止发布了新的文献求助10
33秒前
深情的迎海完成签到,获得积分10
33秒前
34秒前
上官若男应助老肥采纳,获得10
34秒前
胖儿发布了新的文献求助10
34秒前
36秒前
Naomi-yu发布了新的文献求助10
37秒前
37秒前
37秒前
希望天下0贩的0应助coolkid采纳,获得10
38秒前
kkkay完成签到,获得积分10
40秒前
41秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198