清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning–based feature selection to search stable microbial biomarkers: application to inflammatory bowel disease

特征选择 机器学习 人工智能 理论(学习稳定性) 计算机科学 生物标志物发现 特征(语言学) 模式识别(心理学) 感知器 微生物群 数据挖掘 生物信息学 人工神经网络 生物 生物化学 语言学 哲学 蛋白质组学 基因
作者
Youngro Lee,Marco Cappellato,Barbara Di Camillo
出处
期刊:GigaScience [Oxford University Press]
卷期号:12 被引量:3
标识
DOI:10.1093/gigascience/giad083
摘要

Abstract Background Biomarker discovery exploiting feature importance of machine learning has risen recently in the microbiome landscape with its high predictive performance in several disease states. To have a concrete selection among a high number of features, recursive feature elimination (RFE) has been widely used in the bioinformatics field. However, machine learning–based RFE has factors that decrease the stability of feature selection. In this article, we suggested methods to improve stability while sustaining performance. Results We exploited the abundance matrices of the gut microbiome (283 taxa at species level and 220 at genus level) to classify between patients with inflammatory bowel disease (IBD) and healthy control (1,569 samples). We found that applying an already published data transformation before RFE improves feature stability significantly. Moreover, we performed an in-depth evaluation of different variants of the data transformation and identify those that demonstrate better improvement in stability while not sacrificing classification performance. To ensure a robust comparison, we evaluated stability using various similarity metrics, distances, the common number of features, and the ability to filter out noise features. We were able to confirm that the mapping by the Bray–Curtis similarity matrix before RFE consistently improves the stability while maintaining good performance. Multilayer perceptron algorithm exhibited the highest performance among 8 different machine learning algorithms when a large number of features (a few hundred) were considered based on the best performance across 100 bootstrapped internal test sets. Conversely, when utilizing only a limited number of biomarkers as a trade-off between optimal performance and method generalizability, the random forest algorithm demonstrated the best performance. Using the optimal pipeline we developed, we identified 14 biomarkers for IBD at the species level and analyzed their roles using Shapley additive explanations. Conclusion Taken together, our work not only showed how to improve biomarker discovery in the metataxonomic field without sacrificing classification performance but also provided useful insights for future comparative studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虚幻念寒完成签到 ,获得积分10
8秒前
15秒前
15秒前
22秒前
白华苍松发布了新的文献求助10
27秒前
xhsz1111完成签到 ,获得积分10
31秒前
BowieHuang应助科研通管家采纳,获得10
32秒前
在水一方应助wciphone采纳,获得10
49秒前
59秒前
1分钟前
Arctic完成签到 ,获得积分10
1分钟前
FMHChan完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
婉莹完成签到 ,获得积分0
2分钟前
大饼完成签到 ,获得积分10
2分钟前
2分钟前
wciphone发布了新的文献求助10
2分钟前
xuexi完成签到 ,获得积分10
2分钟前
远方完成签到 ,获得积分10
2分钟前
tianshanfeihe完成签到 ,获得积分10
2分钟前
BowieHuang应助Omni采纳,获得20
2分钟前
2分钟前
年轻的凝云完成签到 ,获得积分10
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
科研通AI6应助wciphone采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
白华苍松发布了新的文献求助10
3分钟前
zzh完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
学生信的大叔完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534481
求助须知:如何正确求助?哪些是违规求助? 4622551
关于积分的说明 14582640
捐赠科研通 4562673
什么是DOI,文献DOI怎么找? 2500297
邀请新用户注册赠送积分活动 1479832
关于科研通互助平台的介绍 1451027