Electronic Nose for Tea Identification Detection based on Machine Learning K-Nearest Neighbors Method and Raspberry Pi 4

树莓皮 计算机科学 k-最近邻算法 鉴定(生物学) 电子鼻 吹覆盆子 人工智能 模式识别(心理学) 万维网 植物 园艺 生物 物联网
作者
W. S. Mada Sanjaya,Akhmad Roziqin,Ahsani Taqwim,Putri Sintia,Fillah Alamsyah,Thirda Febrilian Putra,Faris Haidar Mubasyir,Samsul Gustamal,Agung Wijaya Temiesela,M. Fauzi Badru Zaman,Nur Azizah Maulina Purnama Sari,Dyah Anggraeni
标识
DOI:10.1109/cosite60233.2023.10250144
摘要

This study aims to identify the types of tea to determine their authenticity and quality using the Machine Learning K-Nearest Neighbors (KNN) method and Raspberry Pi 4. The developed system uses tea aroma data collected through an Electronic Nose (E-Nose) connected to Raspberry Pi 4, which utilizes eight gas sensors (MQ 2, MQ 3, MQ 4, MQ 6, MQ 7, MQ 8, MQ 9, MQ 135) to measure the gas levels formed by various volatile compounds that evaporate in different types of tea with varying compositions, namely 100% green tea, 100% jasmine tea, 100% black tea, 80% green tea and 20% jasmine tea, and 75% green tea and 25% jasmine tea. The data is processed using the Machine Learning KNN method to classify tea types based on the detected aroma patterns. The evaluation of the analysis takes into account metrics such as accuracy, precision, recall (sensitivity), true negative rate (specificity), F-1 score, confusion matrix, and Principal Component Analysis (PCA). The results of this study indicate that the Machine Learning KNN method using Raspberry Pi 4 can accurately identify the types of tea. The evaluation of the analysis shows satisfactory model performance, with high levels of accuracy, precision, recall, specificity, and F1 scores. The confusion matrix provides a clear picture of the model's ability to classify tea types, while the PCA plot provides an intuitive understanding of the data structure, making it easier for researchers and stakeholders to interpret and analyze the complexity of the data with ease. The results of this study show that the E-Nose system with the KNN method is capable of differentiating between green tea, black tea, and a combination of green tea and black tea, with an accuracy value of up to 93%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的可乐完成签到 ,获得积分10
1秒前
深情安青应助momo采纳,获得10
2秒前
852应助王汉韬采纳,获得10
2秒前
Anmaterchem1完成签到,获得积分10
3秒前
潘善若发布了新的文献求助10
3秒前
西西完成签到,获得积分10
6秒前
乐乐应助潘善若采纳,获得10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
小小完成签到,获得积分10
9秒前
西瓜汁完成签到,获得积分10
10秒前
向日葵完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
12秒前
13秒前
王汉韬发布了新的文献求助10
14秒前
14秒前
16秒前
鸢也完成签到,获得积分10
16秒前
17秒前
110发布了新的文献求助10
18秒前
19秒前
露露发布了新的文献求助10
19秒前
坚定路人完成签到,获得积分10
20秒前
潘善若发布了新的文献求助10
21秒前
SciGPT应助沈清酌采纳,获得10
22秒前
23秒前
23秒前
24秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
天天快乐应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
英俊的铭应助科研通管家采纳,获得10
27秒前
赘婿应助科研通管家采纳,获得10
27秒前
隐形曼青应助Lili采纳,获得10
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
SYLH应助科研通管家采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158