Electronic Nose for Tea Identification Detection based on Machine Learning K-Nearest Neighbors Method and Raspberry Pi 4

树莓皮 计算机科学 k-最近邻算法 鉴定(生物学) 电子鼻 吹覆盆子 人工智能 模式识别(心理学) 万维网 植物 园艺 物联网 生物
作者
W. S. Mada Sanjaya,Akhmad Roziqin,Ahsani Taqwim,Putri Sintia,Fillah Alamsyah,Thirda Febrilian Putra,Faris Haidar Mubasyir,Samsul Gustamal,Agung Wijaya Temiesela,M. Fauzi Badru Zaman,Nur Azizah Maulina Purnama Sari,Dyah Anggraeni
标识
DOI:10.1109/cosite60233.2023.10250144
摘要

This study aims to identify the types of tea to determine their authenticity and quality using the Machine Learning K-Nearest Neighbors (KNN) method and Raspberry Pi 4. The developed system uses tea aroma data collected through an Electronic Nose (E-Nose) connected to Raspberry Pi 4, which utilizes eight gas sensors (MQ 2, MQ 3, MQ 4, MQ 6, MQ 7, MQ 8, MQ 9, MQ 135) to measure the gas levels formed by various volatile compounds that evaporate in different types of tea with varying compositions, namely 100% green tea, 100% jasmine tea, 100% black tea, 80% green tea and 20% jasmine tea, and 75% green tea and 25% jasmine tea. The data is processed using the Machine Learning KNN method to classify tea types based on the detected aroma patterns. The evaluation of the analysis takes into account metrics such as accuracy, precision, recall (sensitivity), true negative rate (specificity), F-1 score, confusion matrix, and Principal Component Analysis (PCA). The results of this study indicate that the Machine Learning KNN method using Raspberry Pi 4 can accurately identify the types of tea. The evaluation of the analysis shows satisfactory model performance, with high levels of accuracy, precision, recall, specificity, and F1 scores. The confusion matrix provides a clear picture of the model's ability to classify tea types, while the PCA plot provides an intuitive understanding of the data structure, making it easier for researchers and stakeholders to interpret and analyze the complexity of the data with ease. The results of this study show that the E-Nose system with the KNN method is capable of differentiating between green tea, black tea, and a combination of green tea and black tea, with an accuracy value of up to 93%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oath完成签到,获得积分10
1秒前
微笑冰旋完成签到,获得积分10
1秒前
搞怪藏今发布了新的文献求助10
2秒前
2秒前
白糖完成签到,获得积分10
4秒前
刘锦裕发布了新的文献求助10
4秒前
4秒前
龙行天下发布了新的文献求助10
5秒前
大个应助LC采纳,获得10
6秒前
ocean发布了新的文献求助10
7秒前
tuanheqi应助andrele采纳,获得50
8秒前
wengjiaqi完成签到,获得积分10
8秒前
敏er好学发布了新的文献求助10
8秒前
9秒前
希望天下0贩的0应助11采纳,获得10
9秒前
伍嗲嗲完成签到,获得积分10
11秒前
hqr完成签到,获得积分20
11秒前
爆米花应助灵巧一斩采纳,获得10
12秒前
大个应助我是人机采纳,获得10
13秒前
方越应助必中采纳,获得20
13秒前
13秒前
科研通AI2S应助lvsehx采纳,获得10
14秒前
14秒前
14秒前
伍嗲嗲发布了新的文献求助10
17秒前
pgg完成签到,获得积分10
17秒前
ganzhongxin发布了新的文献求助10
17秒前
CipherSage应助LC采纳,获得10
18秒前
lbw发布了新的文献求助10
18秒前
桐桐应助橙子采纳,获得10
19秒前
19秒前
科研通AI2S应助刘锦裕采纳,获得10
19秒前
阿庆完成签到,获得积分10
21秒前
22秒前
蒋时晏举报和颂求助涉嫌违规
22秒前
23秒前
feeuoo完成签到,获得积分20
24秒前
25秒前
yolanda发布了新的文献求助30
25秒前
Pavel完成签到,获得积分10
25秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330040
求助须知:如何正确求助?哪些是违规求助? 2959654
关于积分的说明 8596227
捐赠科研通 2638022
什么是DOI,文献DOI怎么找? 1444115
科研通“疑难数据库(出版商)”最低求助积分说明 668935
邀请新用户注册赠送积分活动 656517