Electronic Nose for Tea Identification Detection based on Machine Learning K-Nearest Neighbors Method and Raspberry Pi 4

树莓皮 计算机科学 k-最近邻算法 鉴定(生物学) 电子鼻 吹覆盆子 人工智能 模式识别(心理学) 万维网 植物 园艺 生物 物联网
作者
W. S. Mada Sanjaya,Akhmad Roziqin,Ahsani Taqwim,Putri Sintia,Fillah Alamsyah,Thirda Febrilian Putra,Faris Haidar Mubasyir,Samsul Gustamal,Agung Wijaya Temiesela,M. Fauzi Badru Zaman,Nur Azizah Maulina Purnama Sari,Dyah Anggraeni
标识
DOI:10.1109/cosite60233.2023.10250144
摘要

This study aims to identify the types of tea to determine their authenticity and quality using the Machine Learning K-Nearest Neighbors (KNN) method and Raspberry Pi 4. The developed system uses tea aroma data collected through an Electronic Nose (E-Nose) connected to Raspberry Pi 4, which utilizes eight gas sensors (MQ 2, MQ 3, MQ 4, MQ 6, MQ 7, MQ 8, MQ 9, MQ 135) to measure the gas levels formed by various volatile compounds that evaporate in different types of tea with varying compositions, namely 100% green tea, 100% jasmine tea, 100% black tea, 80% green tea and 20% jasmine tea, and 75% green tea and 25% jasmine tea. The data is processed using the Machine Learning KNN method to classify tea types based on the detected aroma patterns. The evaluation of the analysis takes into account metrics such as accuracy, precision, recall (sensitivity), true negative rate (specificity), F-1 score, confusion matrix, and Principal Component Analysis (PCA). The results of this study indicate that the Machine Learning KNN method using Raspberry Pi 4 can accurately identify the types of tea. The evaluation of the analysis shows satisfactory model performance, with high levels of accuracy, precision, recall, specificity, and F1 scores. The confusion matrix provides a clear picture of the model's ability to classify tea types, while the PCA plot provides an intuitive understanding of the data structure, making it easier for researchers and stakeholders to interpret and analyze the complexity of the data with ease. The results of this study show that the E-Nose system with the KNN method is capable of differentiating between green tea, black tea, and a combination of green tea and black tea, with an accuracy value of up to 93%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馒头完成签到,获得积分10
1秒前
MS903完成签到,获得积分10
6秒前
CJW完成签到 ,获得积分10
7秒前
韧迹完成签到 ,获得积分0
7秒前
mmd完成签到 ,获得积分10
7秒前
七一安完成签到 ,获得积分10
8秒前
浪麻麻完成签到 ,获得积分10
12秒前
包容的剑完成签到 ,获得积分10
16秒前
等待的大炮完成签到,获得积分10
16秒前
注水萝卜完成签到 ,获得积分10
18秒前
Chem34完成签到,获得积分10
26秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
hhh2018687完成签到,获得积分10
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
嘒彼小星完成签到 ,获得积分10
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
32秒前
ri_290完成签到,获得积分10
32秒前
33秒前
nsc发布了新的文献求助30
35秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
nsc发布了新的文献求助10
35秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022