Electronic Nose for Tea Identification Detection based on Machine Learning K-Nearest Neighbors Method and Raspberry Pi 4

树莓皮 计算机科学 k-最近邻算法 鉴定(生物学) 电子鼻 吹覆盆子 人工智能 模式识别(心理学) 万维网 植物 园艺 生物 物联网
作者
W. S. Mada Sanjaya,Akhmad Roziqin,Ahsani Taqwim,Putri Sintia,Fillah Alamsyah,Thirda Febrilian Putra,Faris Haidar Mubasyir,Samsul Gustamal,Agung Wijaya Temiesela,M. Fauzi Badru Zaman,Nur Azizah Maulina Purnama Sari,Dyah Anggraeni
标识
DOI:10.1109/cosite60233.2023.10250144
摘要

This study aims to identify the types of tea to determine their authenticity and quality using the Machine Learning K-Nearest Neighbors (KNN) method and Raspberry Pi 4. The developed system uses tea aroma data collected through an Electronic Nose (E-Nose) connected to Raspberry Pi 4, which utilizes eight gas sensors (MQ 2, MQ 3, MQ 4, MQ 6, MQ 7, MQ 8, MQ 9, MQ 135) to measure the gas levels formed by various volatile compounds that evaporate in different types of tea with varying compositions, namely 100% green tea, 100% jasmine tea, 100% black tea, 80% green tea and 20% jasmine tea, and 75% green tea and 25% jasmine tea. The data is processed using the Machine Learning KNN method to classify tea types based on the detected aroma patterns. The evaluation of the analysis takes into account metrics such as accuracy, precision, recall (sensitivity), true negative rate (specificity), F-1 score, confusion matrix, and Principal Component Analysis (PCA). The results of this study indicate that the Machine Learning KNN method using Raspberry Pi 4 can accurately identify the types of tea. The evaluation of the analysis shows satisfactory model performance, with high levels of accuracy, precision, recall, specificity, and F1 scores. The confusion matrix provides a clear picture of the model's ability to classify tea types, while the PCA plot provides an intuitive understanding of the data structure, making it easier for researchers and stakeholders to interpret and analyze the complexity of the data with ease. The results of this study show that the E-Nose system with the KNN method is capable of differentiating between green tea, black tea, and a combination of green tea and black tea, with an accuracy value of up to 93%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助浮想圆影采纳,获得10
2秒前
共享精神应助深情寻冬采纳,获得10
3秒前
3秒前
2021发布了新的文献求助10
3秒前
3秒前
贪玩手链发布了新的文献求助10
3秒前
简单的大哥完成签到,获得积分10
3秒前
枫asaki完成签到,获得积分10
5秒前
5秒前
5秒前
飞猪发布了新的文献求助10
5秒前
niuma发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
王也完成签到,获得积分10
8秒前
NiNi完成签到,获得积分10
8秒前
carl完成签到 ,获得积分10
9秒前
热心又蓝完成签到,获得积分10
9秒前
9秒前
共享精神应助xhuryts采纳,获得10
9秒前
serney发布了新的文献求助10
9秒前
10秒前
怪味痘发布了新的文献求助10
10秒前
隐形曼青应助nenoaowu采纳,获得10
10秒前
11秒前
Jansen发布了新的文献求助30
11秒前
轩辕十四应助MXX采纳,获得10
12秒前
12秒前
木木发布了新的文献求助30
13秒前
顽皮的雪鸮完成签到,获得积分10
13秒前
李涛发布了新的文献求助10
14秒前
鹏gg发布了新的文献求助10
14秒前
Owen应助lifenghou采纳,获得10
15秒前
能干大树完成签到 ,获得积分10
15秒前
biu发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842155
求助须知:如何正确求助?哪些是违规求助? 3384295
关于积分的说明 10533896
捐赠科研通 3104642
什么是DOI,文献DOI怎么找? 1709781
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 774029