Electronic Nose for Tea Identification Detection based on Machine Learning K-Nearest Neighbors Method and Raspberry Pi 4

树莓皮 计算机科学 k-最近邻算法 鉴定(生物学) 电子鼻 吹覆盆子 人工智能 模式识别(心理学) 万维网 植物 园艺 生物 物联网
作者
W. S. Mada Sanjaya,Akhmad Roziqin,Ahsani Taqwim,Putri Sintia,Fillah Alamsyah,Thirda Febrilian Putra,Faris Haidar Mubasyir,Samsul Gustamal,Agung Wijaya Temiesela,M. Fauzi Badru Zaman,Nur Azizah Maulina Purnama Sari,Dyah Anggraeni
标识
DOI:10.1109/cosite60233.2023.10250144
摘要

This study aims to identify the types of tea to determine their authenticity and quality using the Machine Learning K-Nearest Neighbors (KNN) method and Raspberry Pi 4. The developed system uses tea aroma data collected through an Electronic Nose (E-Nose) connected to Raspberry Pi 4, which utilizes eight gas sensors (MQ 2, MQ 3, MQ 4, MQ 6, MQ 7, MQ 8, MQ 9, MQ 135) to measure the gas levels formed by various volatile compounds that evaporate in different types of tea with varying compositions, namely 100% green tea, 100% jasmine tea, 100% black tea, 80% green tea and 20% jasmine tea, and 75% green tea and 25% jasmine tea. The data is processed using the Machine Learning KNN method to classify tea types based on the detected aroma patterns. The evaluation of the analysis takes into account metrics such as accuracy, precision, recall (sensitivity), true negative rate (specificity), F-1 score, confusion matrix, and Principal Component Analysis (PCA). The results of this study indicate that the Machine Learning KNN method using Raspberry Pi 4 can accurately identify the types of tea. The evaluation of the analysis shows satisfactory model performance, with high levels of accuracy, precision, recall, specificity, and F1 scores. The confusion matrix provides a clear picture of the model's ability to classify tea types, while the PCA plot provides an intuitive understanding of the data structure, making it easier for researchers and stakeholders to interpret and analyze the complexity of the data with ease. The results of this study show that the E-Nose system with the KNN method is capable of differentiating between green tea, black tea, and a combination of green tea and black tea, with an accuracy value of up to 93%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情芷荷发布了新的文献求助10
1秒前
random完成签到,获得积分10
2秒前
2秒前
果果瑞宁完成签到,获得积分10
2秒前
3秒前
机智小虾米完成签到,获得积分20
3秒前
goldenfleece完成签到,获得积分10
4秒前
科研通AI2S应助学者采纳,获得10
4秒前
小杨完成签到,获得积分10
5秒前
sutharsons应助科研通管家采纳,获得30
6秒前
6秒前
Ava应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得30
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
Eric_Lee2000应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
6秒前
王子完成签到,获得积分10
7秒前
李繁蕊发布了新的文献求助10
8秒前
诚心的大碗应助明理念桃采纳,获得20
8秒前
9秒前
meng完成签到,获得积分10
9秒前
学者完成签到,获得积分10
9秒前
英俊的铭应助愉快盼曼采纳,获得10
10秒前
10秒前
小媛完成签到 ,获得积分10
11秒前
学术小白完成签到,获得积分20
11秒前
赘婿应助xiaomeng采纳,获得10
11秒前
Khr1stINK发布了新的文献求助10
11秒前
清新的苑博完成签到,获得积分10
11秒前
12秒前
果果瑞宁发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808