Novel Wearable HD-EMG Sensor With Shift-Robust Gesture Recognition Using Deep Learning

计算机科学 稳健性(进化) 可穿戴计算机 人工智能 卷积神经网络 手势识别 模式识别(心理学) 计算机视觉 语音识别 手势 嵌入式系统 生物化学 基因 化学
作者
Félix Chamberland,Étienne Buteau,Simon Tam,Evan Campbell,A Mortazavi,Erik Scheme,Paul Fortier,Mounir Boukadoum,Alexandre Campeau-Lecours,Benoît Gosselin
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 968-984 被引量:2
标识
DOI:10.1109/tbcas.2023.3314053
摘要

In this work, we present a hardware-software solution to improve the robustness of hand gesture recognition to confounding factors in myoelectric control. The solution includes a novel, full-circumference, flexible, 64-channel high-density electromyography (HD-EMG) sensor called EMaGer. The stretchable, wearable sensor adapts to different forearm sizes while maintaining uniform electrode density around the limb. Leveraging this uniformity, we propose novel array barrel-shifting data augmentation (ABSDA) approach used with a convolutional neural network (CNN), and an anti-aliased CNN (AA-CNN), that provides shift invariance around the limb for improved classification robustness to electrode movement, forearm orientation, and inter-session variability. Signals are sampled from a 4×16 HD-EMG array of electrodes at a frequency of 1 kHz and 16-bit resolution. Using data from 12 non-amputated participants, the approach is tested in response to sensor rotation, forearm rotation, and inter-session scenarios. The proposed ABSDA-CNN method improves inter-session accuracy by 25.67% on average across users for 6 gesture classes compared to conventional CNN classification. A comparison with other devices shows that this benefit is enabled by the unique design of the EMaGer array. The AA-CNN yields improvements of up to 63.05% accuracy over non-augmented methods when tested with electrode displacements ranging from -45 ° to +45 ° around the limb. Overall, this article demonstrates the benefits of co-designing sensor systems, processing methods, and inference algorithms to leverage synergistic and interdependent properties to solve state-of-the-art problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
李健的小迷弟应助三分采纳,获得10
1秒前
好好完成签到,获得积分10
2秒前
2秒前
3秒前
有魅力丝完成签到,获得积分10
3秒前
充电宝应助王淇茜采纳,获得10
3秒前
4秒前
酷波er应助杨哈哈采纳,获得10
4秒前
科研通AI2S应助xx采纳,获得10
4秒前
znn发布了新的文献求助10
4秒前
6秒前
有魅力丝发布了新的文献求助10
7秒前
heyunhua23完成签到,获得积分10
7秒前
双木完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
田様应助吴家鑫采纳,获得10
9秒前
9秒前
heyunhua23发布了新的文献求助10
10秒前
yu发布了新的文献求助10
13秒前
纪震宇发布了新的文献求助10
15秒前
15秒前
16秒前
科研通AI5应助魔幻安筠采纳,获得10
18秒前
打打应助cxd采纳,获得10
20秒前
MZ发布了新的文献求助10
20秒前
changge发布了新的文献求助80
20秒前
小新发布了新的文献求助10
20秒前
纪震宇完成签到,获得积分10
20秒前
21秒前
田様应助niniyiya采纳,获得10
22秒前
24秒前
Hello应助Steven采纳,获得10
24秒前
骑恐龙的少年完成签到,获得积分20
25秒前
深情安青应助永远永远采纳,获得10
25秒前
26秒前
LiRay发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999817
求助须知:如何正确求助?哪些是违规求助? 3539272
关于积分的说明 11276402
捐赠科研通 3277909
什么是DOI,文献DOI怎么找? 1807781
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142