计算机科学
稳健性(进化)
可穿戴计算机
人工智能
卷积神经网络
手势识别
模式识别(心理学)
计算机视觉
语音识别
手势
嵌入式系统
生物化学
化学
基因
作者
Félix Chamberland,Étienne Buteau,Simon Tam,Evan Campbell,A Mortazavi,Erik Scheme,Paul Fortier,Mounir Boukadoum,Alexandre Campeau-Lecours,Benoît Gosselin
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems
[Institute of Electrical and Electronics Engineers]
日期:2023-10-01
卷期号:17 (5): 968-984
被引量:2
标识
DOI:10.1109/tbcas.2023.3314053
摘要
In this work, we present a hardware-software solution to improve the robustness of hand gesture recognition to confounding factors in myoelectric control. The solution includes a novel, full-circumference, flexible, 64-channel high-density electromyography (HD-EMG) sensor called EMaGer. The stretchable, wearable sensor adapts to different forearm sizes while maintaining uniform electrode density around the limb. Leveraging this uniformity, we propose novel array barrel-shifting data augmentation (ABSDA) approach used with a convolutional neural network (CNN), and an anti-aliased CNN (AA-CNN), that provides shift invariance around the limb for improved classification robustness to electrode movement, forearm orientation, and inter-session variability. Signals are sampled from a 4×16 HD-EMG array of electrodes at a frequency of 1 kHz and 16-bit resolution. Using data from 12 non-amputated participants, the approach is tested in response to sensor rotation, forearm rotation, and inter-session scenarios. The proposed ABSDA-CNN method improves inter-session accuracy by 25.67% on average across users for 6 gesture classes compared to conventional CNN classification. A comparison with other devices shows that this benefit is enabled by the unique design of the EMaGer array. The AA-CNN yields improvements of up to 63.05% accuracy over non-augmented methods when tested with electrode displacements ranging from -45 ° to +45 ° around the limb. Overall, this article demonstrates the benefits of co-designing sensor systems, processing methods, and inference algorithms to leverage synergistic and interdependent properties to solve state-of-the-art problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI