Novel Wearable HD-EMG Sensor With Shift-Robust Gesture Recognition Using Deep Learning

计算机科学 稳健性(进化) 可穿戴计算机 人工智能 卷积神经网络 手势识别 模式识别(心理学) 计算机视觉 语音识别 手势 嵌入式系统 生物化学 化学 基因
作者
Félix Chamberland,Étienne Buteau,Simon Tam,Evan Campbell,A Mortazavi,Erik Scheme,Paul Fortier,Mounir Boukadoum,Alexandre Campeau-Lecours,Benoît Gosselin
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 968-984 被引量:2
标识
DOI:10.1109/tbcas.2023.3314053
摘要

In this work, we present a hardware-software solution to improve the robustness of hand gesture recognition to confounding factors in myoelectric control. The solution includes a novel, full-circumference, flexible, 64-channel high-density electromyography (HD-EMG) sensor called EMaGer. The stretchable, wearable sensor adapts to different forearm sizes while maintaining uniform electrode density around the limb. Leveraging this uniformity, we propose novel array barrel-shifting data augmentation (ABSDA) approach used with a convolutional neural network (CNN), and an anti-aliased CNN (AA-CNN), that provides shift invariance around the limb for improved classification robustness to electrode movement, forearm orientation, and inter-session variability. Signals are sampled from a 4×16 HD-EMG array of electrodes at a frequency of 1 kHz and 16-bit resolution. Using data from 12 non-amputated participants, the approach is tested in response to sensor rotation, forearm rotation, and inter-session scenarios. The proposed ABSDA-CNN method improves inter-session accuracy by 25.67% on average across users for 6 gesture classes compared to conventional CNN classification. A comparison with other devices shows that this benefit is enabled by the unique design of the EMaGer array. The AA-CNN yields improvements of up to 63.05% accuracy over non-augmented methods when tested with electrode displacements ranging from -45 ° to +45 ° around the limb. Overall, this article demonstrates the benefits of co-designing sensor systems, processing methods, and inference algorithms to leverage synergistic and interdependent properties to solve state-of-the-art problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助皮皮桂采纳,获得10
1秒前
凝子老师完成签到,获得积分10
1秒前
奶糖发布了新的文献求助30
1秒前
TORCH完成签到 ,获得积分10
3秒前
李健的小迷弟应助lin采纳,获得10
3秒前
3秒前
4秒前
TT发布了新的文献求助10
4秒前
奶糖完成签到,获得积分10
7秒前
丘比特应助浪迹天涯采纳,获得10
8秒前
10秒前
10秒前
虚幻白玉发布了新的文献求助10
11秒前
清客完成签到 ,获得积分10
11秒前
传奇3应助阳阳采纳,获得10
11秒前
13秒前
皮皮桂发布了新的文献求助10
13秒前
Hello应助无奈傲菡采纳,获得10
13秒前
故意的傲玉应助FENGHUI采纳,获得10
14秒前
15秒前
科研通AI5应助nextconnie采纳,获得10
16秒前
James完成签到,获得积分10
16秒前
17秒前
Lucas应助sun采纳,获得10
18秒前
KristenStewart完成签到,获得积分10
20秒前
过时的热狗完成签到,获得积分10
20秒前
点点完成签到,获得积分10
20秒前
Zxc发布了新的文献求助10
21秒前
涨芝士完成签到 ,获得积分10
22秒前
23秒前
无名欧文关注了科研通微信公众号
23秒前
科研123完成签到,获得积分10
25秒前
crescent完成签到 ,获得积分10
27秒前
无奈傲菡发布了新的文献求助10
27秒前
烟花应助123号采纳,获得10
30秒前
超帅的遥完成签到,获得积分10
30秒前
Zxc完成签到,获得积分10
31秒前
lbt完成签到 ,获得积分10
32秒前
yao完成签到 ,获得积分10
33秒前
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849