Novel Wearable HD-EMG Sensor With Shift-Robust Gesture Recognition Using Deep Learning

计算机科学 稳健性(进化) 可穿戴计算机 人工智能 卷积神经网络 手势识别 模式识别(心理学) 计算机视觉 语音识别 手势 嵌入式系统 生物化学 化学 基因
作者
Félix Chamberland,Étienne Buteau,Simon Tam,Evan Campbell,A Mortazavi,Erik Scheme,Paul Fortier,Mounir Boukadoum,Alexandre Campeau-Lecours,Benoît Gosselin
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 968-984 被引量:2
标识
DOI:10.1109/tbcas.2023.3314053
摘要

In this work, we present a hardware-software solution to improve the robustness of hand gesture recognition to confounding factors in myoelectric control. The solution includes a novel, full-circumference, flexible, 64-channel high-density electromyography (HD-EMG) sensor called EMaGer. The stretchable, wearable sensor adapts to different forearm sizes while maintaining uniform electrode density around the limb. Leveraging this uniformity, we propose novel array barrel-shifting data augmentation (ABSDA) approach used with a convolutional neural network (CNN), and an anti-aliased CNN (AA-CNN), that provides shift invariance around the limb for improved classification robustness to electrode movement, forearm orientation, and inter-session variability. Signals are sampled from a 4×16 HD-EMG array of electrodes at a frequency of 1 kHz and 16-bit resolution. Using data from 12 non-amputated participants, the approach is tested in response to sensor rotation, forearm rotation, and inter-session scenarios. The proposed ABSDA-CNN method improves inter-session accuracy by 25.67% on average across users for 6 gesture classes compared to conventional CNN classification. A comparison with other devices shows that this benefit is enabled by the unique design of the EMaGer array. The AA-CNN yields improvements of up to 63.05% accuracy over non-augmented methods when tested with electrode displacements ranging from -45 ° to +45 ° around the limb. Overall, this article demonstrates the benefits of co-designing sensor systems, processing methods, and inference algorithms to leverage synergistic and interdependent properties to solve state-of-the-art problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助ffyzsl采纳,获得10
刚刚
刚刚
临水思长完成签到,获得积分10
1秒前
kobeliu发布了新的文献求助10
1秒前
ALL发布了新的文献求助10
1秒前
2秒前
DT完成签到,获得积分10
2秒前
YJH完成签到,获得积分10
3秒前
3秒前
5秒前
所所应助气球采纳,获得10
5秒前
可爱的函函应助HUO采纳,获得10
5秒前
微笑冰淇淋完成签到,获得积分10
5秒前
彩虹儿完成签到,获得积分10
6秒前
RC发布了新的文献求助10
6秒前
半夏完成签到,获得积分10
6秒前
Enoelle发布了新的文献求助30
6秒前
6秒前
活泼的沛山完成签到,获得积分20
7秒前
Ooops完成签到,获得积分10
9秒前
10秒前
隐形曼青应助kobeliu采纳,获得10
10秒前
李爱国应助兀那狗子别跑采纳,获得10
10秒前
西子阳发布了新的文献求助10
10秒前
寒冷威发布了新的文献求助10
11秒前
sirius发布了新的文献求助10
11秒前
luyuan完成签到 ,获得积分10
12秒前
CipherSage应助Kansny采纳,获得10
12秒前
lin完成签到,获得积分20
15秒前
15秒前
15秒前
虚心沂完成签到,获得积分10
15秒前
16秒前
小蘑菇应助jingutaimi采纳,获得10
17秒前
Owen应助大气的妙旋采纳,获得10
17秒前
TUYANG完成签到,获得积分10
18秒前
敏感宫苴发布了新的文献求助10
18秒前
18秒前
RC完成签到,获得积分10
18秒前
Enoelle完成签到,获得积分10
18秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547686
求助须知:如何正确求助?哪些是违规求助? 3978585
关于积分的说明 12319234
捐赠科研通 3647114
什么是DOI,文献DOI怎么找? 2008560
邀请新用户注册赠送积分活动 1044062
科研通“疑难数据库(出版商)”最低求助积分说明 932684