On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans

肺癌 腺癌 无线电技术 医学 放射科 胸部(昆虫解剖学) 霍恩斯菲尔德秤 癌症 病理 计算机断层摄影术 内科学 解剖
作者
Selene Tomassini,Nicola Falcionelli,G Bruschi,Agnese Sbrollini,Niccolò Marini,Paolo Sernani,Micaela Morettini,Henning Müller,Aldo Franco Dragoni,Laura Burattini
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:110: 102310-102310 被引量:3
标识
DOI:10.1016/j.compmedimag.2023.102310
摘要

Non-Small Cell Lung Cancer (NSCLC) accounts for about 85% of all lung cancers. Developing non-invasive techniques for NSCLC histology characterization may not only help clinicians to make targeted therapeutic treatments but also prevent subjects from undergoing lung biopsy, which is challenging and could lead to clinical implications. The motivation behind the study presented here is to develop an advanced on-cloud decision-support system, named LUCY, for non-small cell LUng Cancer histologY characterization directly from thorax Computed Tomography (CT) scans. This aim was pursued by selecting thorax CT scans of 182 LUng ADenocarcinoma (LUAD) and 186 LUng Squamous Cell carcinoma (LUSC) subjects from four openly accessible data collections (NSCLC-Radiomics, NSCLC-Radiogenomics, NSCLC-Radiomics-Genomics and TCGA-LUAD), in addition to the implementation and comparison of two end-to-end neural networks (the core layer of whom is a convolutional long short-term memory layer), the performance evaluation on test dataset (NSCLC-Radiomics-Genomics) from a subject-level perspective in relation to NSCLC histological subtype location and grade, and the dynamic visual interpretation of the achieved results by producing and analyzing one heatmap video for each scan. LUCY reached test Area Under the receiver operating characteristic Curve (AUC) values above 77% in all NSCLC histological subtype location and grade groups, and a best AUC value of 97% on the entire dataset reserved for testing, proving high generalizability to heterogeneous data and robustness. Thus, LUCY is a clinically-useful decision-support system able to timely, non-invasively and reliably provide visually-understandable predictions on LUAD and LUSC subjects in relation to clinically-relevant information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zhangyuyu完成签到,获得积分10
2秒前
洛苏发布了新的文献求助10
2秒前
4秒前
丁丁完成签到,获得积分10
5秒前
温婉的如波完成签到,获得积分20
5秒前
6秒前
6秒前
孤虹哲凝发布了新的文献求助10
7秒前
轻念完成签到,获得积分10
7秒前
zhangyuyu发布了新的文献求助10
8秒前
所所应助勤劳的鸡采纳,获得10
8秒前
桐桐应助xx采纳,获得10
8秒前
10秒前
10秒前
11秒前
13秒前
13秒前
ghostR发布了新的文献求助30
13秒前
疲倦之躯完成签到,获得积分10
16秒前
zhangzhuopu发布了新的文献求助30
17秒前
sqb发布了新的文献求助10
19秒前
19秒前
灵素完成签到,获得积分10
23秒前
李爱国应助俞安珊采纳,获得10
23秒前
我是老大应助奥利安费采纳,获得10
25秒前
Alicia发布了新的文献求助10
26秒前
哈哈发布了新的文献求助10
26秒前
占臻完成签到,获得积分10
26秒前
无敌暴龙战士完成签到,获得积分10
27秒前
27秒前
梦启完成签到,获得积分10
27秒前
30秒前
30秒前
31秒前
特昂特昂完成签到 ,获得积分10
32秒前
33秒前
会飞的鱼应助洛苏采纳,获得30
34秒前
34秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517