On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans

肺癌 腺癌 无线电技术 医学 放射科 胸部(昆虫解剖学) 霍恩斯菲尔德秤 癌症 病理 计算机断层摄影术 内科学 解剖
作者
Selene Tomassini,Nicola Falcionelli,G Bruschi,Agnese Sbrollini,Niccolò Marini,Paolo Sernani,Micaela Morettini,Henning Müller,Aldo Franco Dragoni,Laura Burattini
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:110: 102310-102310 被引量:11
标识
DOI:10.1016/j.compmedimag.2023.102310
摘要

Non-Small Cell Lung Cancer (NSCLC) accounts for about 85% of all lung cancers. Developing non-invasive techniques for NSCLC histology characterization may not only help clinicians to make targeted therapeutic treatments but also prevent subjects from undergoing lung biopsy, which is challenging and could lead to clinical implications. The motivation behind the study presented here is to develop an advanced on-cloud decision-support system, named LUCY, for non-small cell LUng Cancer histologY characterization directly from thorax Computed Tomography (CT) scans. This aim was pursued by selecting thorax CT scans of 182 LUng ADenocarcinoma (LUAD) and 186 LUng Squamous Cell carcinoma (LUSC) subjects from four openly accessible data collections (NSCLC-Radiomics, NSCLC-Radiogenomics, NSCLC-Radiomics-Genomics and TCGA-LUAD), in addition to the implementation and comparison of two end-to-end neural networks (the core layer of whom is a convolutional long short-term memory layer), the performance evaluation on test dataset (NSCLC-Radiomics-Genomics) from a subject-level perspective in relation to NSCLC histological subtype location and grade, and the dynamic visual interpretation of the achieved results by producing and analyzing one heatmap video for each scan. LUCY reached test Area Under the receiver operating characteristic Curve (AUC) values above 77% in all NSCLC histological subtype location and grade groups, and a best AUC value of 97% on the entire dataset reserved for testing, proving high generalizability to heterogeneous data and robustness. Thus, LUCY is a clinically-useful decision-support system able to timely, non-invasively and reliably provide visually-understandable predictions on LUAD and LUSC subjects in relation to clinically-relevant information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
草莓熊草莓完成签到,获得积分10
1秒前
打打应助Thrain采纳,获得10
2秒前
15966014069发布了新的文献求助10
3秒前
smile完成签到,获得积分10
4秒前
Mia完成签到,获得积分10
4秒前
5秒前
七里野草完成签到,获得积分10
6秒前
SY完成签到,获得积分10
6秒前
7秒前
8秒前
诚心的梅完成签到,获得积分10
8秒前
8秒前
酷波er应助舒服的又菱采纳,获得10
8秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
9秒前
香蕉诗蕊应助科研通管家采纳,获得10
9秒前
悲伤土豆丝完成签到,获得积分10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得30
9秒前
寒鸦完成签到,获得积分20
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601274
求助须知:如何正确求助?哪些是违规求助? 4686785
关于积分的说明 14846051
捐赠科研通 4680352
什么是DOI,文献DOI怎么找? 2539276
邀请新用户注册赠送积分活动 1506151
关于科研通互助平台的介绍 1471283