On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans

肺癌 腺癌 无线电技术 医学 放射科 胸部(昆虫解剖学) 霍恩斯菲尔德秤 癌症 病理 计算机断层摄影术 内科学 解剖
作者
Selene Tomassini,Nicola Falcionelli,G Bruschi,Agnese Sbrollini,Niccolò Marini,Paolo Sernani,Micaela Morettini,Henning Müller,Aldo Franco Dragoni,Laura Burattini
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:110: 102310-102310 被引量:3
标识
DOI:10.1016/j.compmedimag.2023.102310
摘要

Non-Small Cell Lung Cancer (NSCLC) accounts for about 85% of all lung cancers. Developing non-invasive techniques for NSCLC histology characterization may not only help clinicians to make targeted therapeutic treatments but also prevent subjects from undergoing lung biopsy, which is challenging and could lead to clinical implications. The motivation behind the study presented here is to develop an advanced on-cloud decision-support system, named LUCY, for non-small cell LUng Cancer histologY characterization directly from thorax Computed Tomography (CT) scans. This aim was pursued by selecting thorax CT scans of 182 LUng ADenocarcinoma (LUAD) and 186 LUng Squamous Cell carcinoma (LUSC) subjects from four openly accessible data collections (NSCLC-Radiomics, NSCLC-Radiogenomics, NSCLC-Radiomics-Genomics and TCGA-LUAD), in addition to the implementation and comparison of two end-to-end neural networks (the core layer of whom is a convolutional long short-term memory layer), the performance evaluation on test dataset (NSCLC-Radiomics-Genomics) from a subject-level perspective in relation to NSCLC histological subtype location and grade, and the dynamic visual interpretation of the achieved results by producing and analyzing one heatmap video for each scan. LUCY reached test Area Under the receiver operating characteristic Curve (AUC) values above 77% in all NSCLC histological subtype location and grade groups, and a best AUC value of 97% on the entire dataset reserved for testing, proving high generalizability to heterogeneous data and robustness. Thus, LUCY is a clinically-useful decision-support system able to timely, non-invasively and reliably provide visually-understandable predictions on LUAD and LUSC subjects in relation to clinically-relevant information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
sun发布了新的文献求助10
2秒前
小智0921完成签到,获得积分10
3秒前
3秒前
语未既完成签到,获得积分10
3秒前
鲤鱼笑白完成签到,获得积分20
3秒前
失眠梦柏发布了新的文献求助10
4秒前
zebs发布了新的文献求助10
4秒前
派小星完成签到 ,获得积分10
4秒前
清风发布了新的文献求助10
6秒前
Darlin完成签到,获得积分10
7秒前
Yang完成签到,获得积分10
7秒前
甘牡娟完成签到,获得积分10
8秒前
ark861023发布了新的文献求助30
8秒前
9秒前
火星上香菇完成签到,获得积分10
11秒前
Akim应助舒服的踏歌采纳,获得10
12秒前
青街向晚完成签到,获得积分10
15秒前
16秒前
爱笑灵竹完成签到,获得积分10
16秒前
寂寞有声发布了新的文献求助10
16秒前
XT666完成签到,获得积分10
16秒前
大眼的平松完成签到,获得积分10
17秒前
17秒前
18秒前
巴啦啦啦发布了新的文献求助10
20秒前
20秒前
Orange应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
21秒前
22秒前
Aria应助lgh采纳,获得10
22秒前
huhu发布了新的文献求助10
22秒前
lll完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919