A machine learning based approach to solve the aerosol dynamics coagulation model

气溶胶 力矩(物理) 人工神经网络 模块化设计 计算机科学 机器学习 环境科学 算法 人工智能 气象学 物理 经典力学 操作系统
作者
Onochie Okonkwo,Rahul Patel,Ravindra D. Gudi,Pratim Biswas
出处
期刊:Aerosol Science and Technology [Informa]
卷期号:57 (11): 1098-1116 被引量:1
标识
DOI:10.1080/02786826.2023.2249074
摘要

AbstractSolving aerosol dynamic models accurately to obtain the size distribution function is often computationally expensive. Conventional artificial neural network (ANN) models offer an alternative procedure to solve the aerosol dynamic equations. However, conventional ANN models can result in violation of aerosol mass conservation. To further enhance accuracy and reduce computational time, a hybrid ANN approach to solve the aerosol coagulation equation is developed, validated, and demonstrated. The methodology and assumptions for the development of the hybrid ANN model which provides an analytical closed form solution for aerosol coagulation is described. The ANN model is trained and validated using a dataset from an accurate sectional model. Following this, the hybrid ANN aerosol model is used to describe the evolution of aerosol in a furnace aerosol reactor. The hybrid ANN model results are compared to the accurate sectional and moment coagulation models. The hybrid ANN coagulation model prediction was found to accurately describe the evolution of the size distribution at a computational cost which is slightly more than the moment model but orders of magnitude less than the sectional model.Copyright © 2023 American Association for Aerosol ResearchEDITOR: Nicole Riemer Data availability statementThe data that support the findings of this study are openly available in Mendeley Data at https://data.mendeley.com/datasets/pt4wjkhmyk/1 (Okonkwo et al. Citation2023).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingPartial support for this work was provided by a grant from the US Department of Energy: Development of Critical Components for the Modular Staged Pressurized Oxy-Combustion Power Plant; DE-FE0031925.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
徐沛完成签到,获得积分10
刚刚
cloud发布了新的文献求助10
1秒前
qqq发布了新的文献求助10
3秒前
道情发布了新的文献求助30
3秒前
一二三四五六完成签到,获得积分10
3秒前
9202211125发布了新的文献求助10
4秒前
alee完成签到,获得积分10
4秒前
小洒不洒应助大气的稀采纳,获得10
4秒前
点金石完成签到,获得积分10
4秒前
Sandy完成签到 ,获得积分10
5秒前
6秒前
英姑应助Marksman497采纳,获得10
8秒前
8秒前
多喝水完成签到 ,获得积分10
9秒前
易瑾完成签到 ,获得积分10
9秒前
9秒前
大白不白完成签到,获得积分10
9秒前
香奈宝完成签到,获得积分10
10秒前
张牧之完成签到 ,获得积分10
10秒前
蓝桥兰灯完成签到,获得积分10
10秒前
panxixiang完成签到,获得积分20
10秒前
沫荔完成签到 ,获得积分10
12秒前
panxixiang发布了新的文献求助10
13秒前
陈艺鹏完成签到,获得积分10
13秒前
Einson完成签到 ,获得积分10
14秒前
12345656656完成签到,获得积分10
14秒前
14秒前
盐于律己发布了新的文献求助10
15秒前
畅快yig完成签到,获得积分10
16秒前
come发布了新的文献求助10
16秒前
16秒前
19秒前
Tonald Yang发布了新的文献求助10
20秒前
20秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
22秒前
榕俊完成签到,获得积分10
22秒前
22秒前
23秒前
李健应助mugglea采纳,获得10
24秒前
科研通AI6应助HudaBala采纳,获得100
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498797
求助须知:如何正确求助?哪些是违规求助? 4595936
关于积分的说明 14450632
捐赠科研通 4528886
什么是DOI,文献DOI怎么找? 2481758
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438653