A machine learning based approach to solve the aerosol dynamics coagulation model

气溶胶 力矩(物理) 人工神经网络 模块化设计 计算机科学 机器学习 环境科学 算法 人工智能 气象学 物理 经典力学 操作系统
作者
Onochie Okonkwo,Rahul Patel,Ravindra D. Gudi,Pratim Biswas
出处
期刊:Aerosol Science and Technology [Informa]
卷期号:57 (11): 1098-1116 被引量:1
标识
DOI:10.1080/02786826.2023.2249074
摘要

AbstractSolving aerosol dynamic models accurately to obtain the size distribution function is often computationally expensive. Conventional artificial neural network (ANN) models offer an alternative procedure to solve the aerosol dynamic equations. However, conventional ANN models can result in violation of aerosol mass conservation. To further enhance accuracy and reduce computational time, a hybrid ANN approach to solve the aerosol coagulation equation is developed, validated, and demonstrated. The methodology and assumptions for the development of the hybrid ANN model which provides an analytical closed form solution for aerosol coagulation is described. The ANN model is trained and validated using a dataset from an accurate sectional model. Following this, the hybrid ANN aerosol model is used to describe the evolution of aerosol in a furnace aerosol reactor. The hybrid ANN model results are compared to the accurate sectional and moment coagulation models. The hybrid ANN coagulation model prediction was found to accurately describe the evolution of the size distribution at a computational cost which is slightly more than the moment model but orders of magnitude less than the sectional model.Copyright © 2023 American Association for Aerosol ResearchEDITOR: Nicole Riemer Data availability statementThe data that support the findings of this study are openly available in Mendeley Data at https://data.mendeley.com/datasets/pt4wjkhmyk/1 (Okonkwo et al. Citation2023).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingPartial support for this work was provided by a grant from the US Department of Energy: Development of Critical Components for the Modular Staged Pressurized Oxy-Combustion Power Plant; DE-FE0031925.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Accepted应助hcq采纳,获得10
2秒前
赘婿应助棉花采纳,获得10
3秒前
华仔应助小分队采纳,获得10
3秒前
4秒前
赖不弱完成签到,获得积分10
5秒前
小鼠拯救者完成签到,获得积分10
6秒前
8秒前
三火应助annie采纳,获得10
9秒前
热情的乐菱完成签到,获得积分10
9秒前
粗心的问儿完成签到,获得积分10
9秒前
雪白的硬币关注了科研通微信公众号
9秒前
传奇3应助刘大恒采纳,获得10
9秒前
爱笑若冰完成签到 ,获得积分10
9秒前
任鲂发布了新的文献求助10
10秒前
汉堡包应助十月的天空采纳,获得10
10秒前
完美世界应助veblem采纳,获得10
10秒前
我是老大应助轩辕忆枫采纳,获得10
11秒前
12秒前
Freja完成签到,获得积分10
12秒前
丁璐完成签到,获得积分10
12秒前
12秒前
13秒前
机智的誉完成签到,获得积分10
13秒前
14秒前
17秒前
Nancy发布了新的文献求助50
17秒前
哆啦猫发布了新的文献求助10
18秒前
小分队发布了新的文献求助10
18秒前
18秒前
自然千凝关注了科研通微信公众号
18秒前
无畏完成签到,获得积分10
19秒前
学霸宇大王完成签到 ,获得积分10
19秒前
20秒前
21秒前
21秒前
22秒前
wulianlian发布了新的文献求助10
22秒前
23秒前
lpt完成签到 ,获得积分10
24秒前
情怀应助Liu_Ci采纳,获得10
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125633
求助须知:如何正确求助?哪些是违规求助? 2775924
关于积分的说明 7728426
捐赠科研通 2431401
什么是DOI,文献DOI怎么找? 1291999
科研通“疑难数据库(出版商)”最低求助积分说明 622301
版权声明 600376