A machine learning based approach to solve the aerosol dynamics coagulation model

气溶胶 力矩(物理) 人工神经网络 模块化设计 计算机科学 机器学习 环境科学 算法 人工智能 气象学 物理 经典力学 操作系统
作者
Onochie Okonkwo,Rahul Patel,Ravindra D. Gudi,Pratim Biswas
出处
期刊:Aerosol Science and Technology [Taylor & Francis]
卷期号:57 (11): 1098-1116 被引量:1
标识
DOI:10.1080/02786826.2023.2249074
摘要

AbstractSolving aerosol dynamic models accurately to obtain the size distribution function is often computationally expensive. Conventional artificial neural network (ANN) models offer an alternative procedure to solve the aerosol dynamic equations. However, conventional ANN models can result in violation of aerosol mass conservation. To further enhance accuracy and reduce computational time, a hybrid ANN approach to solve the aerosol coagulation equation is developed, validated, and demonstrated. The methodology and assumptions for the development of the hybrid ANN model which provides an analytical closed form solution for aerosol coagulation is described. The ANN model is trained and validated using a dataset from an accurate sectional model. Following this, the hybrid ANN aerosol model is used to describe the evolution of aerosol in a furnace aerosol reactor. The hybrid ANN model results are compared to the accurate sectional and moment coagulation models. The hybrid ANN coagulation model prediction was found to accurately describe the evolution of the size distribution at a computational cost which is slightly more than the moment model but orders of magnitude less than the sectional model.Copyright © 2023 American Association for Aerosol ResearchEDITOR: Nicole Riemer Data availability statementThe data that support the findings of this study are openly available in Mendeley Data at https://data.mendeley.com/datasets/pt4wjkhmyk/1 (Okonkwo et al. Citation2023).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingPartial support for this work was provided by a grant from the US Department of Energy: Development of Critical Components for the Modular Staged Pressurized Oxy-Combustion Power Plant; DE-FE0031925.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助zzydada采纳,获得10
刚刚
丘比特应助小鱼僧采纳,获得10
1秒前
qianlicao发布了新的文献求助10
2秒前
2秒前
隋阳完成签到 ,获得积分10
3秒前
6秒前
读书酱完成签到 ,获得积分10
7秒前
7秒前
我是老大应助Chelry采纳,获得10
7秒前
昔年完成签到,获得积分10
10秒前
hulibin1208完成签到,获得积分10
10秒前
zhao完成签到,获得积分10
10秒前
嗯哼大王发布了新的文献求助10
11秒前
12秒前
小坤完成签到,获得积分10
13秒前
13秒前
甜甜的盼海完成签到,获得积分10
14秒前
Broccoli发布了新的文献求助20
15秒前
豪士赋完成签到,获得积分10
15秒前
16秒前
单匀霖发布了新的文献求助10
17秒前
tananna发布了新的文献求助10
17秒前
快乐非笑完成签到,获得积分10
18秒前
zhentg发布了新的文献求助10
19秒前
xixilulixiu完成签到 ,获得积分10
20秒前
wanci应助启点采纳,获得10
21秒前
憨憨完成签到 ,获得积分10
24秒前
嗯哼大王完成签到,获得积分10
24秒前
天天快乐应助单匀霖采纳,获得10
26秒前
27秒前
乐乐应助niuniu采纳,获得10
28秒前
滕皓轩发布了新的文献求助30
29秒前
852应助mizhou采纳,获得10
29秒前
29秒前
29秒前
30秒前
yookia应助科研通管家采纳,获得10
34秒前
kecheng应助科研通管家采纳,获得10
34秒前
34秒前
ED应助科研通管家采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425