Identification of Potential Therapeutic Targets for Myopic Choroidal Neovascularization via Discovery-Driven Data Mining

MMP3型 MMP9公司 MMP2型 计算生物学 血管内皮生长因子A 鉴定(生物学) 生物信息学 生物 医学 基因 癌症研究 血管内皮生长因子受体 下调和上调 血管内皮生长因子 基因表达 遗传学 植物
作者
Junhan Chen,Shin‐ichi Ikeda,Kazuno Negishi,Kazuo Tsubota,Toshihide Kurihara
出处
期刊:Current Eye Research [Informa]
卷期号:48 (12): 1160-1169 被引量:1
标识
DOI:10.1080/02713683.2023.2252201
摘要

Purpose: Myopic choroidal neovascularization (mCNV) is a prevalent cause of vision loss. However, the development of effective therapeutic targets for mCNV has been hindered by the paucity of suitable animal models. Therefore, the aim of this study is to identify potential genes and pathways associated with mCNV and to unearth prospective therapeutic targets that can be utilized to devise efficacious treatments. Methods: Text data mining was used to identify genes linked to choroid, neovascularization, and myopia. g: Profiler was utilized to analyze the biological processes of gene ontology and the Reactome pathways. Protein interaction network analysis was performed using strings and visualized in Cytoscape. MCODE and cytoHubba were used for further screening. Results: Discovery-driven text data mining identified 55 potential genes related to choroid, neovascularization, and myopia. Gene enrichment analysis revealed 11 biological processes and seven Reactome pathways. A protein-protein interaction network with 47 nodes was constructed and analyzed using centrality ranking. Key clusters were identified through algorithm tools. Finally, 14 genes (IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1), in addition to VEGFA, were evaluated as targets with potential as future therapeutics. Conclusions: This study provides new potential therapeutic targets for mCNV, including IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1, which correspond to seven potential enriched pathways. These findings provide a basis for further research and offer new possibilities for developing therapeutic interventions for this condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的觅珍完成签到,获得积分10
2秒前
2秒前
李hy发布了新的文献求助10
3秒前
研友_VZG7GZ应助刘霆勋采纳,获得10
3秒前
科研通AI6应助李俊杰采纳,获得30
4秒前
4秒前
秘密发布了新的文献求助10
4秒前
4秒前
4秒前
情怀应助好名字采纳,获得10
5秒前
5秒前
xiaolv应助能干可乐采纳,获得10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
gngxnh完成签到 ,获得积分10
6秒前
酷酷问薇发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
jm完成签到,获得积分10
7秒前
张紫嫣完成签到,获得积分10
7秒前
7秒前
怪诞奇男子完成签到,获得积分10
7秒前
8秒前
ss发布了新的文献求助10
8秒前
郑嘻嘻发布了新的文献求助10
8秒前
薄荷778发布了新的文献求助10
9秒前
9秒前
俏皮的老三完成签到 ,获得积分10
9秒前
11秒前
爆米花应助卢哲采纳,获得10
11秒前
sci大户发布了新的文献求助10
11秒前
Grace发布了新的文献求助10
11秒前
11秒前
科研通AI6应助虚心的丹珍采纳,获得10
11秒前
能干蜜蜂发布了新的文献求助10
12秒前
wanduzi完成签到,获得积分10
12秒前
12秒前
jm发布了新的文献求助10
12秒前
情怀应助123采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802