Identification of Potential Therapeutic Targets for Myopic Choroidal Neovascularization via Discovery-Driven Data Mining

MMP3型 MMP9公司 MMP2型 计算生物学 血管内皮生长因子A 鉴定(生物学) 生物信息学 生物 医学 基因 癌症研究 血管内皮生长因子受体 下调和上调 血管内皮生长因子 基因表达 遗传学 植物
作者
Junhan Chen,Shin‐ichi Ikeda,Kazuno Negishi,Kazuo Tsubota,Toshihide Kurihara
出处
期刊:Current Eye Research [Informa]
卷期号:48 (12): 1160-1169 被引量:1
标识
DOI:10.1080/02713683.2023.2252201
摘要

Purpose: Myopic choroidal neovascularization (mCNV) is a prevalent cause of vision loss. However, the development of effective therapeutic targets for mCNV has been hindered by the paucity of suitable animal models. Therefore, the aim of this study is to identify potential genes and pathways associated with mCNV and to unearth prospective therapeutic targets that can be utilized to devise efficacious treatments. Methods: Text data mining was used to identify genes linked to choroid, neovascularization, and myopia. g: Profiler was utilized to analyze the biological processes of gene ontology and the Reactome pathways. Protein interaction network analysis was performed using strings and visualized in Cytoscape. MCODE and cytoHubba were used for further screening. Results: Discovery-driven text data mining identified 55 potential genes related to choroid, neovascularization, and myopia. Gene enrichment analysis revealed 11 biological processes and seven Reactome pathways. A protein-protein interaction network with 47 nodes was constructed and analyzed using centrality ranking. Key clusters were identified through algorithm tools. Finally, 14 genes (IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1), in addition to VEGFA, were evaluated as targets with potential as future therapeutics. Conclusions: This study provides new potential therapeutic targets for mCNV, including IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1, which correspond to seven potential enriched pathways. These findings provide a basis for further research and offer new possibilities for developing therapeutic interventions for this condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHW完成签到,获得积分10
刚刚
刚刚
打打应助buhuidanhuixue采纳,获得10
刚刚
小欢发布了新的文献求助20
1秒前
所所应助晓晓来了采纳,获得10
1秒前
liushirui发布了新的文献求助10
2秒前
完美世界应助yan采纳,获得80
2秒前
xiancdc完成签到,获得积分10
3秒前
爆米花应助健康的不愁采纳,获得10
3秒前
freya发布了新的文献求助10
3秒前
充电宝应助小白采纳,获得10
3秒前
研友_8WMxKn完成签到,获得积分10
3秒前
4秒前
4秒前
222666发布了新的文献求助10
5秒前
大个应助122采纳,获得10
5秒前
维洛尼亚发布了新的文献求助10
5秒前
yolo完成签到,获得积分10
5秒前
6秒前
初秋完成签到,获得积分20
6秒前
6秒前
李爱国应助知秋采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
烟花应助望山云雾采纳,获得10
7秒前
song发布了新的文献求助10
8秒前
CodeCraft应助研友_8WMxKn采纳,获得10
9秒前
铃溪完成签到,获得积分10
9秒前
9秒前
minbio完成签到,获得积分20
9秒前
AsRNA完成签到,获得积分10
10秒前
董媛媛发布了新的文献求助10
10秒前
10秒前
10秒前
如果再谨慎点完成签到 ,获得积分20
10秒前
huyu发布了新的文献求助10
10秒前
HOAN应助粥粥采纳,获得30
10秒前
李健应助天气晴朗采纳,获得10
11秒前
11秒前
丫丫发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482