An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 大地测量学 生态学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
体贴觅云完成签到,获得积分10
1秒前
无花果应助tim采纳,获得10
1秒前
无言完成签到 ,获得积分10
3秒前
3秒前
4秒前
科研通AI6应助yangjing采纳,获得10
5秒前
5秒前
Xianhe完成签到,获得积分10
7秒前
时迎天发布了新的文献求助10
8秒前
马大帅发布了新的文献求助10
8秒前
青柠发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
bkagyin应助luojimao采纳,获得10
14秒前
13052782801完成签到,获得积分20
14秒前
汪勇发布了新的文献求助10
14秒前
15秒前
希望天下0贩的0应助青柠采纳,获得10
15秒前
菠萝吃多发布了新的文献求助10
15秒前
科研通AI6应助小云采纳,获得10
15秒前
科研通AI2S应助jojo144采纳,获得10
17秒前
18秒前
zhangheng完成签到,获得积分20
18秒前
2023050945发布了新的文献求助10
21秒前
23秒前
psj完成签到,获得积分10
23秒前
晚风完成签到,获得积分10
23秒前
权寻梅完成签到,获得积分10
23秒前
BINGBING1230发布了新的文献求助10
24秒前
husy完成签到,获得积分10
24秒前
Dasein完成签到 ,获得积分10
25秒前
完美世界应助醒醒采纳,获得10
25秒前
玛卡完成签到 ,获得积分20
26秒前
27秒前
量子星尘发布了新的文献求助10
27秒前
负责小笼包完成签到,获得积分20
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618411
求助须知:如何正确求助?哪些是违规求助? 4703270
关于积分的说明 14921904
捐赠科研通 4757391
什么是DOI,文献DOI怎么找? 2550076
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299