An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 生态学 大地测量学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:12
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美诗霜完成签到 ,获得积分10
2秒前
唐冬灵发布了新的文献求助60
6秒前
WYang完成签到,获得积分10
6秒前
6秒前
Mayer1234088完成签到 ,获得积分10
6秒前
动听平露完成签到,获得积分10
7秒前
开心超人完成签到,获得积分10
11秒前
完美世界应助辛勤的豌豆采纳,获得10
11秒前
12秒前
codwest完成签到,获得积分10
13秒前
无花果应助shayla采纳,获得10
14秒前
18秒前
Alina完成签到 ,获得积分0
19秒前
23秒前
24秒前
NAOKI应助白蝶采纳,获得10
25秒前
27秒前
郝宝真发布了新的文献求助10
28秒前
传奇3应助carrieschen采纳,获得30
29秒前
skbz发布了新的文献求助10
31秒前
31秒前
Tina完成签到 ,获得积分10
32秒前
ademwy发布了新的文献求助10
33秒前
DICPGLF完成签到 ,获得积分10
33秒前
颀一一完成签到 ,获得积分10
34秒前
杜彦君发布了新的文献求助10
34秒前
38秒前
40秒前
杨杨完成签到,获得积分10
42秒前
Doc完成签到,获得积分10
42秒前
43秒前
43秒前
白天完成签到,获得积分10
43秒前
牵墨发布了新的文献求助10
43秒前
共享精神应助ademwy采纳,获得10
46秒前
白天发布了新的文献求助10
46秒前
47秒前
48秒前
49秒前
松本润不足完成签到,获得积分10
50秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162863
求助须知:如何正确求助?哪些是违规求助? 2813883
关于积分的说明 7902296
捐赠科研通 2473504
什么是DOI,文献DOI怎么找? 1316868
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187