已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 大地测量学 生态学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingyv发布了新的文献求助10
刚刚
2秒前
激昂的煎蛋完成签到,获得积分10
2秒前
无花果应助捏个小雪团采纳,获得10
3秒前
zhixin发布了新的文献求助10
4秒前
4秒前
淡定自中发布了新的文献求助10
4秒前
无极微光应助PANGDA采纳,获得20
5秒前
南北发布了新的文献求助10
5秒前
小马甲应助ffff采纳,获得10
5秒前
清新的一笑完成签到,获得积分10
6秒前
6秒前
现代的擎苍完成签到,获得积分10
7秒前
7秒前
9秒前
谢大喵发布了新的文献求助10
10秒前
悦耳的真完成签到,获得积分10
10秒前
10秒前
aaa发布了新的文献求助10
11秒前
阔达的丹萱完成签到,获得积分10
11秒前
12秒前
12秒前
mufcyang发布了新的文献求助10
12秒前
howky完成签到,获得积分10
12秒前
13秒前
carl发布了新的文献求助10
13秒前
14秒前
cheng发布了新的文献求助10
14秒前
15秒前
传奇3应助大帅比采纳,获得10
15秒前
生动的悲发布了新的文献求助20
15秒前
ytnju发布了新的文献求助10
15秒前
15秒前
15秒前
酷炫萃发布了新的文献求助10
15秒前
丘比特应助忧虑的流沙采纳,获得10
15秒前
搜集达人应助bingyv采纳,获得10
15秒前
充电宝应助matteo采纳,获得10
15秒前
YJSSLBY完成签到 ,获得积分10
17秒前
Desperate完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644082
求助须知:如何正确求助?哪些是违规求助? 4762848
关于积分的说明 15023478
捐赠科研通 4802306
什么是DOI,文献DOI怎么找? 2567408
邀请新用户注册赠送积分活动 1525124
关于科研通互助平台的介绍 1484620