An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 生态学 大地测量学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
TYG完成签到 ,获得积分10
刚刚
刚刚
刚刚
刚刚
1秒前
丽小杰完成签到,获得积分10
1秒前
triptalk完成签到,获得积分10
1秒前
墨尘发布了新的文献求助30
1秒前
黑黑黑完成签到,获得积分10
2秒前
2秒前
2秒前
qingxinhuo完成签到 ,获得积分10
2秒前
动听锦程发布了新的文献求助10
3秒前
乐乐应助玖a采纳,获得10
3秒前
杨松发布了新的文献求助10
4秒前
科研通AI6应助人123456采纳,获得10
4秒前
AAA完成签到,获得积分10
4秒前
看不完完成签到,获得积分10
4秒前
5秒前
清脆泥猴桃完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
老实的玉米完成签到,获得积分10
6秒前
zhangjiabin完成签到,获得积分10
6秒前
XIGUA完成签到,获得积分10
6秒前
6秒前
wanci应助Fan采纳,获得30
7秒前
wanci给平淡平萱的求助进行了留言
7秒前
vv完成签到,获得积分10
7秒前
番茄鱼完成签到 ,获得积分10
7秒前
xw发布了新的文献求助10
7秒前
情怀应助willroc采纳,获得10
8秒前
杰尼龟的鱼完成签到 ,获得积分10
8秒前
8秒前
天天发布了新的文献求助20
9秒前
可爱新波发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477776
求助须知:如何正确求助?哪些是违规求助? 4579563
关于积分的说明 14369317
捐赠科研通 4507785
什么是DOI,文献DOI怎么找? 2470190
邀请新用户注册赠送积分活动 1457093
关于科研通互助平台的介绍 1431066