An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 大地测量学 生态学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天边发布了新的文献求助10
2秒前
d叨叨鱼完成签到,获得积分10
3秒前
FashionBoy应助义气的妙松采纳,获得80
4秒前
Rheane发布了新的文献求助10
4秒前
7秒前
dragon应助影儿采纳,获得10
8秒前
10秒前
疼痛诊疗发布了新的文献求助20
11秒前
上官若男应助天边采纳,获得10
12秒前
13秒前
Hello应助pgdddh采纳,获得10
15秒前
16秒前
18秒前
dd发布了新的文献求助20
20秒前
tanglu发布了新的文献求助10
20秒前
21秒前
wang_qi完成签到,获得积分20
24秒前
25秒前
薄饼哥丶发布了新的文献求助10
27秒前
吃点红糖馒头完成签到,获得积分10
29秒前
研友_VZG7GZ应助蒋丞采纳,获得10
29秒前
sleep完成签到,获得积分10
30秒前
30秒前
yangyl完成签到,获得积分10
30秒前
闪闪的迎海完成签到,获得积分10
31秒前
当代鲁迅发布了新的文献求助10
31秒前
1111应助吃点红糖馒头采纳,获得20
32秒前
35秒前
35秒前
36秒前
xili发布了新的文献求助10
38秒前
qqqq发布了新的文献求助10
41秒前
xymm1204完成签到,获得积分10
42秒前
Lucas应助闪闪的迎海采纳,获得10
43秒前
星辰大海应助Zjx采纳,获得10
44秒前
dd完成签到,获得积分10
45秒前
46秒前
薄饼哥丶完成签到,获得积分10
47秒前
48秒前
科研通AI5应助杰瑞采纳,获得10
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652