An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 大地测量学 生态学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意白开水完成签到,获得积分10
1秒前
科研通AI6应助缥缈的水彤采纳,获得10
1秒前
redflower发布了新的文献求助10
1秒前
JamesPei应助王与可采纳,获得10
2秒前
科研通AI6应助壮观的可以采纳,获得10
2秒前
Li完成签到,获得积分20
2秒前
李健应助cjw采纳,获得10
3秒前
3秒前
xiaominza发布了新的文献求助30
3秒前
万能图书馆应助西瓜妹采纳,获得10
3秒前
粗暴的达发布了新的文献求助10
3秒前
科研通AI6应助风中泰坦采纳,获得10
4秒前
4秒前
彭于晏应助长风采纳,获得10
4秒前
依克完成签到,获得积分10
4秒前
4秒前
4秒前
cccat发布了新的文献求助50
5秒前
格林维度关注了科研通微信公众号
5秒前
领导范儿应助忘的澜采纳,获得10
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得60
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
挽歌发布了新的文献求助20
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
ytzhang0587应助科研通管家采纳,获得20
6秒前
科研通AI6应助hhh采纳,获得10
6秒前
spc68应助科研通管家采纳,获得20
6秒前
Mida应助chenchenchen采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905