An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 大地测量学 生态学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mic应助科研通管家采纳,获得10
刚刚
做科研的小施同学完成签到,获得积分10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得30
刚刚
小巧亦竹发布了新的文献求助10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得30
刚刚
小单发布了新的文献求助50
刚刚
王丽娟应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
Jared应助科研通管家采纳,获得10
刚刚
刚刚
妩媚的海应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
smottom应助科研通管家采纳,获得10
刚刚
刚刚
华仔应助科研通管家采纳,获得10
刚刚
星月应助科研通管家采纳,获得20
刚刚
黑猫乾杯应助科研通管家采纳,获得10
1秒前
科研通AI6应助Magic1987采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
王丽娟应助科研通管家采纳,获得10
1秒前
1秒前
Mic应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
黑猫乾杯应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642103
求助须知:如何正确求助?哪些是违规求助? 4758150
关于积分的说明 15016411
捐赠科研通 4800600
什么是DOI,文献DOI怎么找? 2566140
邀请新用户注册赠送积分活动 1524244
关于科研通互助平台的介绍 1483901