An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 生态学 大地测量学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shineshine发布了新的文献求助20
刚刚
Michelle发布了新的文献求助10
2秒前
丘比特应助yao采纳,获得10
2秒前
3秒前
linqi完成签到 ,获得积分10
3秒前
墨扬完成签到,获得积分10
3秒前
Martin完成签到,获得积分10
5秒前
在水一方应助xinyuxxx采纳,获得10
5秒前
CC发布了新的文献求助10
5秒前
echo发布了新的文献求助10
6秒前
7秒前
李李李完成签到,获得积分10
7秒前
7秒前
十五离别后完成签到,获得积分10
7秒前
8秒前
上善若脱碳甲醛完成签到 ,获得积分10
8秒前
yibo发布了新的文献求助10
8秒前
可爱的函函应助清荔采纳,获得10
8秒前
9秒前
英姑应助瀚子采纳,获得10
9秒前
秋天的雪完成签到,获得积分10
9秒前
西瓜完成签到,获得积分10
9秒前
9秒前
桐桐应助爱听歌老1采纳,获得10
9秒前
10秒前
3am发布了新的文献求助10
10秒前
10秒前
铌123发布了新的文献求助20
10秒前
袁月辉发布了新的文献求助10
11秒前
11秒前
端庄的寄风完成签到,获得积分10
11秒前
小飞爱科研完成签到,获得积分10
11秒前
LT完成签到 ,获得积分0
11秒前
秦罗敷完成签到,获得积分20
12秒前
小易发布了新的文献求助20
13秒前
泊凉少年发布了新的文献求助10
14秒前
Rylee发布了新的文献求助10
14秒前
吴彦祖发布了新的文献求助10
14秒前
李爱国应助ddizi采纳,获得10
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541