An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 大地测量学 生态学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑翠桃完成签到,获得积分20
1秒前
小开心发布了新的文献求助10
1秒前
Eon发布了新的文献求助10
1秒前
姚美阁完成签到 ,获得积分10
2秒前
mufcyang发布了新的文献求助10
3秒前
4秒前
4秒前
Puffkten发布了新的文献求助10
5秒前
与梦随行2011完成签到,获得积分10
5秒前
5秒前
高哈哈哈完成签到,获得积分10
6秒前
yr发布了新的文献求助10
9秒前
10秒前
微笑翠桃发布了新的文献求助10
13秒前
13秒前
马佳音完成签到 ,获得积分10
14秒前
在水一方应助Eon采纳,获得10
14秒前
TB123发布了新的文献求助10
14秒前
16秒前
JHL完成签到 ,获得积分10
16秒前
18秒前
18秒前
黎是叻熠黎完成签到,获得积分10
19秒前
每天必补一科完成签到,获得积分10
19秒前
花生完成签到,获得积分10
20秒前
mufcyang完成签到,获得积分10
20秒前
21秒前
缪缪发布了新的文献求助10
22秒前
22秒前
风清扬发布了新的文献求助10
23秒前
甜美乘云完成签到,获得积分10
24秒前
万能图书馆应助嘿嘿采纳,获得10
24秒前
26秒前
26秒前
xuxin完成签到 ,获得积分10
27秒前
大模型应助温柔柜子采纳,获得10
27秒前
啦啦啦完成签到,获得积分10
27秒前
易点邦发布了新的文献求助10
28秒前
28秒前
yyymmm完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714