An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 大地测量学 生态学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阔达的扬完成签到,获得积分10
刚刚
刚刚
gtxy完成签到 ,获得积分10
刚刚
刚刚
尕翠完成签到,获得积分10
刚刚
刚刚
刚刚
科研通AI6应助ccc采纳,获得10
刚刚
88发布了新的文献求助10
1秒前
顾矜应助快乐的白桃采纳,获得10
1秒前
2秒前
2秒前
我是老大应助Daisy采纳,获得10
2秒前
huminjie完成签到,获得积分10
2秒前
稳健的柯南完成签到,获得积分10
2秒前
小鹅发布了新的文献求助10
2秒前
CipherSage应助学术小白采纳,获得10
2秒前
2秒前
2秒前
林林林发布了新的文献求助20
3秒前
wuyuzegang应助dzx1采纳,获得20
3秒前
推土机爱学习完成签到 ,获得积分10
3秒前
Feng发布了新的文献求助10
3秒前
脑洞疼应助文右三采纳,获得10
4秒前
Aaron完成签到,获得积分10
4秒前
4秒前
Yu发布了新的文献求助10
4秒前
4秒前
小蘑菇应助清秀曼彤采纳,获得10
5秒前
谭玲慧发布了新的文献求助30
5秒前
5秒前
00完成签到,获得积分10
5秒前
福福yu完成签到,获得积分10
5秒前
6秒前
无助的人完成签到,获得积分10
6秒前
Vv发布了新的文献求助10
6秒前
趣多多发布了新的文献求助10
6秒前
orixero应助ping采纳,获得10
6秒前
Angleli完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612759
求助须知:如何正确求助?哪些是违规求助? 4697823
关于积分的说明 14895857
捐赠科研通 4734427
什么是DOI,文献DOI怎么找? 2546674
邀请新用户注册赠送积分活动 1510710
关于科研通互助平台的介绍 1473494