亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 生态学 大地测量学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖的春天完成签到 ,获得积分10
6秒前
爆米花应助林淼采纳,获得10
11秒前
15秒前
雪松完成签到 ,获得积分10
19秒前
19秒前
琪琪完成签到 ,获得积分10
23秒前
Limerence发布了新的文献求助10
25秒前
30秒前
31秒前
33秒前
36秒前
37秒前
cvvvv发布了新的文献求助10
37秒前
情怀应助徐志豪采纳,获得10
41秒前
林淼发布了新的文献求助10
41秒前
羊村霸总懒大王完成签到 ,获得积分10
42秒前
Li发布了新的文献求助10
44秒前
年少丶完成签到,获得积分10
45秒前
研友_LkY7BZ完成签到,获得积分10
45秒前
cvvvv完成签到,获得积分10
46秒前
在水一方应助激昂的幻梦采纳,获得10
48秒前
Li完成签到,获得积分10
51秒前
52秒前
56秒前
Zjjiinn完成签到,获得积分10
58秒前
许俊梁发布了新的文献求助10
59秒前
奔放的老青年完成签到,获得积分10
1分钟前
Limerence完成签到,获得积分10
1分钟前
1分钟前
笨蛋美女完成签到 ,获得积分10
1分钟前
xxxhhh发布了新的文献求助10
1分钟前
爱笑的野狼完成签到,获得积分10
1分钟前
乐乐应助典雅的俊驰采纳,获得10
1分钟前
zrm完成签到,获得积分10
1分钟前
zh完成签到,获得积分10
1分钟前
施含莲发布了新的文献求助10
1分钟前
Ava应助xxxhhh采纳,获得10
1分钟前
1分钟前
LC完成签到 ,获得积分10
1分钟前
好巧完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463195
求助须知:如何正确求助?哪些是违规求助? 4567937
关于积分的说明 14312130
捐赠科研通 4493837
什么是DOI,文献DOI怎么找? 2461906
邀请新用户注册赠送积分活动 1450892
关于科研通互助平台的介绍 1426083