An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 生态学 大地测量学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤单的安蕾完成签到,获得积分10
1秒前
余晓雨完成签到,获得积分10
1秒前
王艳发布了新的文献求助10
3秒前
3秒前
HuY完成签到 ,获得积分10
3秒前
加贝发布了新的文献求助10
4秒前
F_echo发布了新的文献求助10
4秒前
Sir.夏季风完成签到,获得积分10
4秒前
5秒前
李照普发布了新的文献求助10
5秒前
5秒前
三脉紫莞关注了科研通微信公众号
6秒前
6秒前
照相机完成签到,获得积分10
7秒前
7秒前
7秒前
Annn完成签到 ,获得积分10
7秒前
8秒前
挽手余生发布了新的文献求助10
9秒前
10秒前
yszve完成签到,获得积分10
11秒前
12秒前
Cao完成签到 ,获得积分10
13秒前
13秒前
13秒前
张彩红完成签到,获得积分10
15秒前
15秒前
lixudong完成签到,获得积分10
16秒前
可爱的函函应助22222采纳,获得10
16秒前
赘婿应助叶素绿采纳,获得10
17秒前
自己哭哭完成签到 ,获得积分10
17秒前
123完成签到 ,获得积分10
17秒前
18秒前
小二郎应助clean采纳,获得50
18秒前
工科小白求学路完成签到,获得积分10
18秒前
18秒前
anhchi发布了新的文献求助10
19秒前
20秒前
清秀的忆秋完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263186
求助须知:如何正确求助?哪些是违规求助? 4423851
关于积分的说明 13770951
捐赠科研通 4298749
什么是DOI,文献DOI怎么找? 2358664
邀请新用户注册赠送积分活动 1354904
关于科研通互助平台的介绍 1316172