An ensemble framework with improved hybrid breeding optimization-based feature selection for intrusion detection

入侵检测系统 计算机科学 特征选择 人工智能 水准点(测量) 维数之咒 数据挖掘 支持向量机 机器学习 Boosting(机器学习) 适应性 模式识别(心理学) 生态学 大地测量学 生物 地理
作者
Zhiwei Ye,Jun Luo,Zhou Wen,Mingwei Wang,Qiyi He
出处
期刊:Future Generation Computer Systems [Elsevier BV]
卷期号:151: 124-136 被引量:26
标识
DOI:10.1016/j.future.2023.09.035
摘要

Intrusion detection is a proactive means to detect network attacks and has been a hot point in network security. To address the curse of dimensionality and improve the Intrusion Detection System (IDS) performance, Hybrid Breeding Optimization (HBO), a novel metaheuristics algorithm inspired by the Chinese three-line hybrid rice breeding process, was implemented in IDS and has achieved good performance. However, it lacks adaptability and tends to get stuck in the local optimum during instantiation. Therefore, this study proposes a novel ensemble framework with improved HBO-based feature selection (FS) for intrusion detection. More specifically, the essential HBO is first modified by levy flight and elite opposition-based learning strategies (LE-HBO) to enhance its ability to seek the optimum. In addition, to make LE-HBO better applied to FS for intrusion detection, a Cooperative Co-evolution Improved HBO (CCIHBO) is proposed. It ranks and groups the features in the data samples, assigns subpopulations of LE-HBO of the appropriate size to each feature space, and finds the optimal feature subset through collaborative cooperation among the subpopulations. Finally, the proposed approach is implemented in benchmark datasets CEC2021, UCI, and security datasets NSL-KDD, WUSTL-IIOT and HAI datasets, in which KNN, SVM, and XBGoost are employed as classifiers for intrusion detection. Experimental results demonstrate that the proposed framework can effectively improve the accuracy of intrusion detection and outperform state-of-the-art methods in relevant evaluation indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hehehe完成签到,获得积分10
刚刚
在水一方应助卡卡采纳,获得10
1秒前
2秒前
嗅犬发布了新的文献求助10
2秒前
3秒前
5秒前
dang完成签到,获得积分10
5秒前
yhtu完成签到,获得积分10
6秒前
6秒前
Rick完成签到,获得积分10
7秒前
忆梦发布了新的文献求助10
8秒前
rally发布了新的文献求助10
8秒前
浮游应助郜浩轩采纳,获得10
8秒前
嘉子发布了新的文献求助30
8秒前
徐木木发布了新的文献求助10
9秒前
知性的安波完成签到,获得积分10
9秒前
呼呼完成签到,获得积分10
9秒前
10秒前
百川发布了新的文献求助10
10秒前
传奇3应助LULU采纳,获得10
11秒前
bkagyin应助等风的人采纳,获得10
11秒前
13秒前
13秒前
14秒前
14秒前
14秒前
张泽宇完成签到,获得积分20
15秒前
个性楷瑞完成签到,获得积分10
16秒前
16秒前
16秒前
17秒前
雨的印记完成签到,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
17秒前
敏感新之完成签到,获得积分10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
fifteen应助科研通管家采纳,获得10
18秒前
ziying126发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546674
求助须知:如何正确求助?哪些是违规求助? 3977829
关于积分的说明 12317357
捐赠科研通 3646236
什么是DOI,文献DOI怎么找? 2008079
邀请新用户注册赠送积分活动 1043641
科研通“疑难数据库(出版商)”最低求助积分说明 932363