A review of secure federated learning: Privacy leakage threats, protection technologies, challenges and future directions

计算机科学 计算机安全 信息隐私 主流 数据科学 人工智能 哲学 神学
作者
Lina Ge,Haiao Li,Xiao Wang,Zhe Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:561: 126897-126897 被引量:8
标识
DOI:10.1016/j.neucom.2023.126897
摘要

Advances in the new generation of Internet of Things (IoT) technology are propelling the growth of intelligent industrial applications worldwide. Simultaneously, widespread adoption of artificial intelligence (AI) technologies, such as machine and deep learning, is accelerating. Traditional machine learning models rely heavily on massive amounts of data, however collecting and processing massive amounts of data generated by network-edge devices is costly and inefficient, and poses serious risks to data privacy. As a new paradigm for statistical model training in distributed edge networks, federated learning (FL) enables data to participate in federated model training without being localized. This approach can be used to solve traditional machine learning problems of low data utilization, data privacy, and information security caused by data isolation. However, the defects of the FL framework and insecure network environments cause many security and privacy leakage problems in actual application scenarios of FL. First, the concepts, classifications, and fundamental FL principles were described. Second, the mainstream privacy security issues and classification of FL were investigated. Privacy security protection techniques for FL were then identified. Finally, challenges and future research directions for the development of FL privacy security are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19205100313应助mysci采纳,获得10
2秒前
2秒前
3秒前
Yolanda完成签到,获得积分10
3秒前
5秒前
星辰大海应助mmmmmmgm采纳,获得10
5秒前
yydsyk完成签到,获得积分10
6秒前
翻羽完成签到,获得积分10
6秒前
7秒前
凌兰发布了新的文献求助10
7秒前
脑洞疼应助Xorgan采纳,获得20
7秒前
aqione发布了新的文献求助10
9秒前
10秒前
11秒前
mww发布了新的文献求助10
12秒前
13秒前
重要忆秋完成签到,获得积分10
16秒前
李健的小迷弟应助桀桀桀采纳,获得10
16秒前
852应助露似珍珠月似弓采纳,获得10
20秒前
22秒前
orixero应助llflame采纳,获得10
22秒前
渴死的鱼完成签到,获得积分20
24秒前
yushe完成签到,获得积分10
24秒前
25秒前
张孟秋完成签到,获得积分10
26秒前
26秒前
桀桀桀发布了新的文献求助10
28秒前
清萍红檀完成签到,获得积分10
29秒前
bimiracle完成签到,获得积分10
30秒前
蘸糖冰美式完成签到,获得积分10
31秒前
张孟秋发布了新的文献求助10
32秒前
实验好难应助蘸糖冰美式采纳,获得10
35秒前
iu完成签到,获得积分10
35秒前
桀桀桀完成签到,获得积分10
35秒前
吴兰田发布了新的文献求助10
39秒前
145完成签到,获得积分10
40秒前
40秒前
43秒前
45秒前
46秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737341
求助须知:如何正确求助?哪些是违规求助? 3281206
关于积分的说明 10023621
捐赠科研通 2997922
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782237
科研通“疑难数据库(出版商)”最低求助积分说明 749762