关系抽取
计算机科学
关系(数据库)
弹丸
零(语言学)
秩(图论)
噪音(视频)
萃取(化学)
基线(sea)
合成数据
训练集
人工智能
数据挖掘
算法
数学
图像(数学)
化学
色谱法
组合数学
海洋学
地质学
语言学
哲学
有机化学
作者
Qing Zhang,Yuechen Yang,Hayilang Zhang,Zhengxin Gao,Hao Wang,Jianyong Duan,Li He,Jie Liu
出处
期刊:Communications in computer and information science
日期:2023-11-25
卷期号:: 367-379
被引量:1
标识
DOI:10.1007/978-981-99-8184-7_28
摘要
In response to the challenge of existing relation triplet extraction models struggling to adapt to new relation categories in zero-shot scenarios, we propose a method that combines generated synthetic training data with the retrieval of relevant documents through a rank-based filtering approach for data augmentation. This approach alleviates the problem of low-quality synthetic training data and reduces noise that may affect the accuracy of triplet extraction in certain relation categories. Experimental results on two public datasets demonstrate that our model exhibits stable and impressive performance compared to the baseline models in terms of precision, recall, and F1 score, resulting in improved effectiveness for zero-shot relation triplet extraction.
科研通智能强力驱动
Strongly Powered by AbleSci AI