Deep Reinforcement Learning

强化学习 计算机科学 人工智能 效率低下 可扩展性 数据库 经济 微观经济学
作者
Moez Krichen
标识
DOI:10.1109/icccnt56998.2023.10306453
摘要

Deep Reinforcement Learning (DRL) is a powerful technique for learning policies for complex decision-making tasks. In this paper, we provide an overview of DRL, including its basic components, key algorithms and techniques, and applications in areas s.a. robotics, game playing, and autonomous driving. We also discuss some of the challenges and limitations of DRL, s.a. sample inefficiency and safety concerns, and we identify some of the promising directions for future research in DRL, s.a. meta-learning, hierarchical reinforcement learning, and combining DRL with formal techniques. In the second part of the paper, we discuss several important applications of DRL, including transfer learning, multi-agent reinforcement learning, and explainable reinforcement learning. We also explore the combination of DRL with formal techniques, a promising area of research for ensuring the safety and reliability of DRL applications. Finally, we identify some of the limitations and open issues in DRL, including sample efficiency, safety, and scalability concerns. To help practitioners effectively apply DRL in their work, we provide recommendations for starting with simple problems, choosing appropriate algorithms and architectures, paying attention to safety and ethics, collaborating with experts, and staying up to date with the latest research in the field. We conclude by highlighting the potential impact of DRL in a wide range of applications and emphasizing the need for careful consideration of the ethical and societal implications of DRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝溺完成签到,获得积分10
1秒前
邵小庆发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
桐桐应助cc采纳,获得10
3秒前
等待吐司应助欢喜代萱采纳,获得10
3秒前
ss完成签到 ,获得积分10
3秒前
刘乐发布了新的文献求助10
3秒前
柳觅夏发布了新的文献求助10
3秒前
Lucas应助芜湖芜湖采纳,获得10
4秒前
HOOW发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
7秒前
cytheria发布了新的文献求助10
7秒前
时间的过客完成签到,获得积分10
7秒前
HesperLxy发布了新的文献求助10
7秒前
SciGPT应助天天玩采纳,获得10
9秒前
9秒前
NexusExplorer应助cc采纳,获得10
9秒前
李爱国应助千尺焰采纳,获得10
10秒前
666发布了新的文献求助10
11秒前
美好斓发布了新的文献求助10
11秒前
11秒前
zzz发布了新的文献求助30
13秒前
文献小白发布了新的文献求助10
13秒前
xxx发布了新的文献求助30
13秒前
666完成签到,获得积分10
13秒前
Jasper应助cc采纳,获得10
14秒前
思源应助hahaha采纳,获得10
15秒前
嘻嘻发布了新的文献求助20
15秒前
15秒前
15秒前
Aurora发布了新的文献求助10
16秒前
angel完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961