Image Recovery Matters: A Recovery-Extraction Framework for Robust Fetal Brain Extraction from MR Images

人工智能 计算机科学 工件(错误) 鉴别器 计算机视觉 分割 模式识别(心理学) 图像分割 特征提取 电信 探测器
作者
Jian Chen,Richard Lu,S. B. Ye,Mengting Guang,Tewodros Megabiaw Tassew,Bin Jing,Guofu Zhang,Geng Chen,Dinggang Shen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2023.3333953
摘要

The extraction of the fetal brain from magnetic resonance (MR) images is a challenging task. In particular, fetal MR images suffer from different kinds of artifacts introduced during the image acquisition. Among those artifacts, intensity inhomogeneity is a common one affecting brain extraction. In this work, we propose a deep learning-based recovery-extraction framework for fetal brain extraction, which is particularly effective in handling fetal MR images with intensity inhomogeneity. Our framework involves two stages. First, the artifact-corrupted images are recovered with the proposed generative adversarial learning-based image recovery network with a novel region-of-darkness discriminator that enforces the network focusing on artifacts of the images. Second, we propose a brain extraction network for more effective fetal brain segmentation by strengthening the association between lower and higher-level features as well as suppressing task-irrelevant features. Thanks to the proposed recovery-extraction strategy, our framework is able to accurately segment fetal brains from artifact corrupted MR images. The experiments show that our framework achieves promising performance in both quantitative and qualitative evaluations, and outperforms state-of-the-art methods in both image recovery and fetal brain extraction
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助phil采纳,获得10
3秒前
完美世界应助调皮万怨采纳,获得10
3秒前
阔达初南完成签到 ,获得积分10
5秒前
碱性染料发布了新的文献求助10
6秒前
小杜发布了新的文献求助10
8秒前
9秒前
11秒前
慕青应助一一采纳,获得10
13秒前
phil发布了新的文献求助10
15秒前
vict完成签到,获得积分10
15秒前
diedeline完成签到,获得积分10
16秒前
16秒前
Orange应助刘家小姐姐采纳,获得10
17秒前
20秒前
20秒前
arabidopsis应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
FashionBoy应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
arabidopsis应助科研通管家采纳,获得10
21秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
arabidopsis应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
22秒前
why应助科研通管家采纳,获得10
22秒前
调皮万怨发布了新的文献求助10
22秒前
CHENG_2025应助科研通管家采纳,获得10
22秒前
Lucas应助猪头军师采纳,获得10
22秒前
22秒前
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962550
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141672
捐赠科研通 3241287
什么是DOI,文献DOI怎么找? 1791495
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803474