清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning Performance of Ultra-Widefield Fundus Imaging for Screening Retinal Lesions in Rural Locales

医学 眼底(子宫) 眼科 视网膜 黄斑变性 后极 验光服务
作者
Tingxin Cui,Duoru Lin,Shanshan Yu,Xinyu Zhao,Zhenzhe Lin,Lanqin Zhao,Fabao Xu,Dongyuan Yun,Jianyu Pang,Ruiyang Li,Liqiong Xie,Pengzhi Zhu,Yuzhe Huang,Hongxin Huang,Changming Hu,Wenyong Huang,Xiaoling Liang,Haotian Lin
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:141 (11): 1045-1045 被引量:18
标识
DOI:10.1001/jamaophthalmol.2023.4650
摘要

Importance Retinal diseases are the leading cause of irreversible blindness worldwide, and timely detection contributes to prevention of permanent vision loss, especially for patients in rural areas with limited medical resources. Deep learning systems (DLSs) based on fundus images with a 45° field of view have been extensively applied in population screening, while the feasibility of using ultra-widefield (UWF) fundus image–based DLSs to detect retinal lesions in patients in rural areas warrants exploration. Objective To explore the performance of a DLS for multiple retinal lesion screening using UWF fundus images from patients in rural areas. Design, Setting, and Participants In this diagnostic study, a previously developed DLS based on UWF fundus images was used to screen for 5 retinal lesions (retinal exudates or drusen, glaucomatous optic neuropathy, retinal hemorrhage, lattice degeneration or retinal breaks, and retinal detachment) in 24 villages of Yangxi County, China, between November 17, 2020, and March 30, 2021. Interventions The captured images were analyzed by the DLS and ophthalmologists. Main Outcomes and Measures The performance of the DLS in rural screening was compared with that of the internal validation in the previous model development stage. The image quality, lesion proportion, and complexity of lesion composition were compared between the model development stage and the rural screening stage. Results A total of 6222 eyes in 3149 participants (1685 women [53.5%]; mean [SD] age, 70.9 [9.1] years) were screened. The DLS achieved a mean (SD) area under the receiver operating characteristic curve (AUC) of 0.918 (0.021) (95% CI, 0.892-0.944) for detecting 5 retinal lesions in the entire data set when applied for patients in rural areas, which was lower than that reported at the model development stage (AUC, 0.998 [0.002] [95% CI, 0.995-1.000]; P < .001). Compared with the fundus images in the model development stage, the fundus images in this rural screening study had an increased frequency of poor quality (13.8% [860 of 6222] vs 0%), increased variation in lesion proportions (0.1% [6 of 6222]-36.5% [2271 of 6222] vs 14.0% [2793 of 19 891]-21.3% [3433 of 16 138]), and an increased complexity of lesion composition. Conclusions and Relevance This diagnostic study suggests that the DLS exhibited excellent performance using UWF fundus images as a screening tool for 5 retinal lesions in patients in a rural setting. However, poor image quality, diverse lesion proportions, and a complex set of lesions may have reduced the performance of the DLS; these factors in targeted screening scenarios should be taken into consideration in the model development stage to ensure good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高健伟完成签到 ,获得积分10
10秒前
赘婿应助ybwei2008_163采纳,获得10
11秒前
Henry完成签到,获得积分10
15秒前
田様应助ybwei2008_163采纳,获得10
22秒前
光亮白山完成签到 ,获得积分10
33秒前
博修完成签到,获得积分10
36秒前
guoguo1119完成签到 ,获得积分10
40秒前
48秒前
ybwei2008_163发布了新的文献求助10
53秒前
淡然觅荷完成签到 ,获得积分10
59秒前
59秒前
科研通AI2S应助可乐采纳,获得50
1分钟前
清爽的以晴完成签到 ,获得积分10
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
naczx完成签到,获得积分0
1分钟前
健忘的晓小完成签到 ,获得积分10
1分钟前
午午午午完成签到 ,获得积分10
1分钟前
coding完成签到,获得积分10
1分钟前
夜话风陵杜完成签到 ,获得积分0
1分钟前
SciGPT应助ybwei2008_163采纳,获得10
1分钟前
酷波er应助keke采纳,获得10
1分钟前
HY完成签到 ,获得积分10
1分钟前
1分钟前
keke发布了新的文献求助10
1分钟前
qin完成签到 ,获得积分10
2分钟前
飞龙在天完成签到 ,获得积分10
2分钟前
老实的乐儿完成签到 ,获得积分10
2分钟前
充电宝应助ybwei2008_163采纳,获得10
2分钟前
丘比特应助陈杰采纳,获得10
2分钟前
2分钟前
大个应助SONGREN采纳,获得20
2分钟前
李爱国应助Developing_human采纳,获得10
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
loom完成签到 ,获得积分10
2分钟前
2分钟前
ybwei2008_163发布了新的文献求助10
2分钟前
bkagyin应助良月三十采纳,获得10
2分钟前
高兴的天川完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664650
求助须知:如何正确求助?哪些是违规求助? 4867676
关于积分的说明 15108309
捐赠科研通 4823315
什么是DOI,文献DOI怎么找? 2582234
邀请新用户注册赠送积分活动 1536272
关于科研通互助平台的介绍 1494672