拉曼光谱
带宽(计算)
光学
校准
反褶积
发光
拉曼散射
遥感
分析化学(期刊)
材料科学
化学
物理
计算机科学
地质学
电信
色谱法
量子力学
作者
Ryan S. Jakubek,R. Bhartia,Kyle Uckert,Sanford A. Asher,Andrew D. Czaja,M. Fries,K. P. Hand,Nikole C. Haney,Joseph Razzell Hollis,M. E. Minitti,Shiv K. Sharma,Sunanda Sharma,Sandra Siljeström
标识
DOI:10.1177/00037028231210885
摘要
In this work, we derive a simple method for calibrating Raman bandwidths for the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard NASA's Perseverance rover. Raman bandwidths and shapes reported by an instrument contain contributions from both the intrinsic Raman band (IRB) and instrumental artifacts. To directly correlate bandwidth to sample properties and to compare bandwidths across instruments, the IRB width needs to be separated from instrumental effects. Here, we use the ubiquitous bandwidth calibration method of modeling the observed Raman bands as a convolution of a Lorentzian IRB and a Gaussian instrument slit function. Using calibration target data, we calculate that SHERLOC has a slit function width of 34.1 cm-1. With a measure of the instrument slit function, we can deconvolve the IRB from the observed band, providing the width of the Raman band unobscured by instrumental artifact. We present the correlation between observed Raman bandwidth and intrinsic Raman bandwidth in table form for the quick estimation of SHERLOC Raman intrinsic bandwidths. We discuss the limitations of using this model to calibrate Raman bandwidth and derive a quantitative method for calculating the errors associated with the calibration. We demonstrate the utility of this method of bandwidth calibration by examining the intrinsic bandwidths of SHERLOC sulfate spectra and by modeling the SHERLOC spectrum of olivine.
科研通智能强力驱动
Strongly Powered by AbleSci AI