亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction

联营 计算机科学 人工智能 编码 机器学习 数据挖掘 模式识别(心理学) 计算生物学 化学 生物 基因 生物化学
作者
Chuangchuang Tian,Luping Wang,Zhiming Cui,Hongjie Wu
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:108: 107982-107982 被引量:4
标识
DOI:10.1016/j.compbiolchem.2023.107982
摘要

Drug target affinity prediction (DTA) is critical to the success of drug development. While numerous machine learning methods have been developed for this task, there remains a necessity to further enhance the accuracy and reliability of predictions. Considerable bias in drug target binding prediction may result due to missing structural information or missing information. In addition, current methods focus only on simulating individual non-covalent interactions between drugs and proteins, thereby neglecting the intricate interplay among different drugs and their interactions with proteins. GTAMP-DTA combines special Attention mechanisms, assigning each atom or amino acid an attention vector. Interactions between drug forms and protein forms were considered to capture information about their interactions. And fusion transformer was used to learn protein characterization from raw amino acid sequences, which were then merged with molecular map features extracted from SMILES. A self-supervised pre-trained embedding that uses pre-trained transformers to encode drug and protein attributes is introduced in order to address the lack of labeled data. Experimental results demonstrate that our model outperforms state-of-the-art methods on both the Davis and KIBA datasets. Additionally, the model's performance undergoes evaluation using three distinct pooling layers (max-pooling, mean-pooling, sum-pooling) along with variations of the attention mechanism. GTAMP-DTA shows significant performance improvements compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助kaka采纳,获得10
刚刚
7秒前
kaka发布了新的文献求助10
13秒前
天天快乐应助乐乐洛洛采纳,获得10
18秒前
苹果绿完成签到,获得积分10
18秒前
25秒前
酷酷的冰真应助苹果绿采纳,获得20
26秒前
37秒前
43秒前
乐乐洛洛发布了新的文献求助10
48秒前
大个应助小美最棒采纳,获得10
1分钟前
大模型应助不攻自破采纳,获得10
1分钟前
科研通AI2S应助热情千柳采纳,获得10
1分钟前
乐乐洛洛发布了新的文献求助10
1分钟前
1分钟前
1分钟前
不攻自破发布了新的文献求助10
1分钟前
小美最棒发布了新的文献求助10
1分钟前
小美最棒完成签到,获得积分10
2分钟前
2分钟前
打打应助科研通管家采纳,获得10
2分钟前
wanci应助jjdeng采纳,获得10
2分钟前
2分钟前
2分钟前
jjdeng发布了新的文献求助10
2分钟前
jjdeng完成签到,获得积分10
2分钟前
哭泣灯泡完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
衣裳薄发布了新的文献求助10
3分钟前
hhh完成签到 ,获得积分10
3分钟前
3分钟前
003完成签到,获得积分10
3分钟前
3分钟前
001完成签到,获得积分10
3分钟前
义气雁完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
002完成签到,获得积分10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965704
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214