GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction

联营 计算机科学 人工智能 编码 机器学习 数据挖掘 模式识别(心理学) 计算生物学 化学 生物 基因 生物化学
作者
Chuangchuang Tian,Luping Wang,Zhiming Cui,Hongjie Wu
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:108: 107982-107982 被引量:12
标识
DOI:10.1016/j.compbiolchem.2023.107982
摘要

Drug target affinity prediction (DTA) is critical to the success of drug development. While numerous machine learning methods have been developed for this task, there remains a necessity to further enhance the accuracy and reliability of predictions. Considerable bias in drug target binding prediction may result due to missing structural information or missing information. In addition, current methods focus only on simulating individual non-covalent interactions between drugs and proteins, thereby neglecting the intricate interplay among different drugs and their interactions with proteins. GTAMP-DTA combines special Attention mechanisms, assigning each atom or amino acid an attention vector. Interactions between drug forms and protein forms were considered to capture information about their interactions. And fusion transformer was used to learn protein characterization from raw amino acid sequences, which were then merged with molecular map features extracted from SMILES. A self-supervised pre-trained embedding that uses pre-trained transformers to encode drug and protein attributes is introduced in order to address the lack of labeled data. Experimental results demonstrate that our model outperforms state-of-the-art methods on both the Davis and KIBA datasets. Additionally, the model's performance undergoes evaluation using three distinct pooling layers (max-pooling, mean-pooling, sum-pooling) along with variations of the attention mechanism. GTAMP-DTA shows significant performance improvements compared to other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xixi发布了新的文献求助10
1秒前
DouBo完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
DouBo发布了新的文献求助10
3秒前
3秒前
小蘑菇应助飞槐采纳,获得10
3秒前
guoguo完成签到,获得积分10
4秒前
4秒前
DHM发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
lei完成签到,获得积分20
5秒前
归尘应助QAQSS采纳,获得10
5秒前
呆萌冷风发布了新的文献求助10
6秒前
6秒前
Chenly发布了新的文献求助30
7秒前
123完成签到 ,获得积分10
7秒前
7秒前
AyraN完成签到,获得积分10
7秒前
7秒前
8秒前
小牛牛发布了新的文献求助10
8秒前
8秒前
LLHHZZ发布了新的文献求助10
8秒前
8秒前
大模型应助泯珉采纳,获得10
9秒前
KKZNB发布了新的文献求助10
9秒前
李健的小迷弟应助石头采纳,获得10
9秒前
wwwwwwww发布了新的文献求助10
9秒前
忧伤的冰彤完成签到,获得积分10
9秒前
玄月发布了新的文献求助10
9秒前
jias完成签到,获得积分10
10秒前
丘比特应助贾舒涵采纳,获得10
10秒前
范兆飞发布了新的文献求助10
11秒前
喜悦绿旋发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851