A Novel CNN-Based Radar Reflectivity Retrieval Network Using Geostationary Satellite Observations

计算机科学 地球静止轨道 雷达 遥感 卷积神经网络 气象雷达 人工智能 卫星 电信 地质学 工程类 航空航天工程
作者
Jiasheng Si,Xingwang Li,Haonan Chen,Lei Han
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5
标识
DOI:10.1109/lgrs.2023.3332844
摘要

A ground-based weather radar is commonly used for observing severe convective weather. However, the limited coverage of the radar poses difficulties in obtaining reliable radar observations for oceanic and mountainous regions. An effective solution is to derive radar data from meteorological satellite observations using deep-learning methods. This study proposes a novel feature redistribution module-based convolutional neural network (FR-CNN) to retrieve radar composite reflectivity (CREF) data from geostationary satellite observations. Differing from existing skip connection (SC)-based CNNs, FR-CNN adopts a feature redistribution module (FRM) to alleviate the problem of information scarcity during network propagation. In the FRM, a parallel attention block (PAB) is introduced to preserve key feature information and improve the retrieval ability of the FR-CNN. The evaluation results show that the FR-CNN can effectively reconstruct radar reflectivity data and has a better performance than other methods like U-Net in terms of assessment indices including the probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liwanhong完成签到,获得积分10
刚刚
龙傲天发布了新的文献求助10
刚刚
胖豆完成签到,获得积分10
1秒前
酷波er应助Jyy77采纳,获得10
1秒前
1秒前
orixero应助qsxy采纳,获得10
1秒前
zhuzhu026发布了新的文献求助10
1秒前
Akim应助趙途嘵生采纳,获得10
2秒前
生5clean完成签到,获得积分10
2秒前
悲伤西米露应助冷语采纳,获得10
2秒前
Bennana发布了新的文献求助10
2秒前
我又不乱来完成签到,获得积分10
3秒前
BK2008完成签到,获得积分10
3秒前
深情安青应助欣慰的星月采纳,获得10
4秒前
笨笨完成签到,获得积分10
4秒前
4秒前
醉清风完成签到 ,获得积分10
5秒前
852应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
研友_n2QP2L应助科研通管家采纳,获得50
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
所所应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
LYSM应助科研通管家采纳,获得10
6秒前
魔幻从菡发布了新的文献求助10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
Jiang应助科研通管家采纳,获得10
6秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960556
求助须知:如何正确求助?哪些是违规求助? 3506870
关于积分的说明 11132558
捐赠科研通 3239151
什么是DOI,文献DOI怎么找? 1790050
邀请新用户注册赠送积分活动 872129
科研通“疑难数据库(出版商)”最低求助积分说明 803128