Three-stage hyperelliptic Kalman filter for health and performance monitoring of aeroengine under multi-source uncertainty

稳健性(进化) 卡尔曼滤波器 控制理论(社会学) 扩展卡尔曼滤波器 计算机科学 蒙特卡罗方法 无味变换 概率逻辑 滤波器(信号处理) 控制工程 工程类 集合卡尔曼滤波器 数学 人工智能 统计 控制(管理) 基因 化学 生物化学 计算机视觉
作者
Sun Rui-Qian,Linfeng Gou,Zongyao Liu,Xiaobao Han
出处
期刊:International Journal of Engine Research [SAGE]
卷期号:25 (3): 557-572 被引量:1
标识
DOI:10.1177/14680874231198734
摘要

Aeroengine operation is inevitably subject to multi-source uncertainty, which consists of epistemic uncertainty related to the aeroengine and stochastic uncertainty associated with the control system. This paper presents a solution for health and performance monitoring under multi-source uncertainty to ensure the safety and reliability of aeroengine whole-life operation in complex environments. Based on the hyperelliptic Kalman filter (HeKF), optimal health monitoring is achieved by treating health parameters as the augmented state. Meanwhile, the conservativeness-reduced output prediction is realized with the extra estimation of the unknown state function bias caused by probabilistic system parameters. Considering the computational effort can be significantly reduced by designing a multi-stage filter, the three-stage hyperelliptic Kalman filter (ThSHeKF) is finally developed, achieving high accuracy health parameter estimation and adaptive performance prediction under multi-source uncertainty. Open-loop and closed-loop numerical simulations demonstrate the effectiveness of the proposed ThSHeKF-based health and performance monitoring with high estimation accuracy. Furthermore, compared to the most commonly used extended Kalman filter (EKF), Monte Carlo (MC) experiments shows that the proposed ThSHeKF is less conservative, has better robustness, and is superior in adaptive monitoring under multi-source uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
了了发布了新的文献求助10
1秒前
1秒前
ZQY完成签到 ,获得积分10
1秒前
斯文败类应助正直亦旋采纳,获得10
3秒前
科研通AI5应助jijahui采纳,获得80
4秒前
Jenny应助背后的诺言采纳,获得10
4秒前
木木完成签到,获得积分10
4秒前
赤邪发布了新的文献求助10
4秒前
4秒前
keen完成签到 ,获得积分10
4秒前
et完成签到,获得积分10
5秒前
桂魄完成签到,获得积分10
5秒前
5秒前
6秒前
wang发布了新的文献求助200
7秒前
7秒前
7秒前
英姑应助snowdrift采纳,获得10
7秒前
7秒前
7秒前
jy完成签到 ,获得积分10
7秒前
NexusExplorer应助立马毕业采纳,获得10
8秒前
在水一方应助123采纳,获得10
9秒前
科目三应助白华苍松采纳,获得10
10秒前
通~发布了新的文献求助10
10秒前
CipherSage应助千幻采纳,获得10
10秒前
10秒前
dddddd完成签到,获得积分10
10秒前
桂魄发布了新的文献求助10
10秒前
年轻的咖啡豆完成签到,获得积分20
11秒前
11秒前
绿洲发布了新的文献求助10
11秒前
11秒前
12秒前
aDou完成签到 ,获得积分10
12秒前
脑洞疼应助bc采纳,获得10
12秒前
NEMO发布了新的文献求助10
12秒前
李健应助mammoth采纳,获得20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762