BiVO4–Liquid Junction Photovoltaic Cell with 0.2% Solar Energy Conversion Efficiency

三碘化物 化学 光电流 碘化物 能量转换效率 表面光电压 光电化学 太阳能电池 光电解 光电化学电池 阳极 光电子学 光化学 电解质 电化学 无机化学 材料科学 色素敏化染料 电极 电解 光谱学 物理化学 物理 量子力学
作者
Sahar Daemi,Samhita Kaushik,Soumik Das,Thomas W. Hamann,Frank E. Osterloh
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (47): 25797-25805 被引量:6
标识
DOI:10.1021/jacs.3c09546
摘要

BiVO4 is an important photoanode material for water oxidation, but its photoelectrochemistry regarding the triiodide/iodide redox couple is not well understood. Here, we use a combination of open circuit potential measurements, photoelectrochemical scans, and liquid surface photovoltage spectroscopy (SPS) to confirm that BiVO4/triiodide/iodide electrolyte contacts produce up to 0.55 V photovoltage under 23 mW/cm-2 illumination from a 470 nm LED. Inspired by these results, we construct FTO/BiVO4/KI(I2)aq/Pt sandwich photoelectrochemical cells from electrochemically grown 0.5 × 0.5 cm2 BiVO4 and Mo-doped BiVO4 films. Under AM 1.5 illumination, the devices have up to 0.22% energy conversion efficiency, 0.32 V photovoltage, and 1.8 mA cm-2 photocurrent. Based on SPS, hole transfer to iodide is sufficiently fast to prevent the competing water oxidation reaction. Mo doping increases the incident photon-to-current efficiency to up to 55% (at 425 nm under front illumination) by improving the BiVO4 conductivity, but this comes at the expense of a lower photovoltage resulting from recombination at the Mo defects and a detrimental Schottky junction at the interface with FTO. Additional photovoltage losses are caused by the offset between the BiVO4 valence band edge and the triiodide/iodide electrochemical potential and by electron back transfer to iodide at the FTO back contact (shunting). Overall, this work provides the first example of a BiVO4-liquid photovoltaic cell and an analysis of its limitations. Even though the larger band gaps of metal oxides constrain their solar energy conversion efficiency, their transparency to visible light and deep valence bands makes them suitable for tandem photovoltaic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
buno应助88采纳,获得10
2秒前
3秒前
三千世界完成签到,获得积分10
3秒前
3秒前
愉快的访旋完成签到,获得积分10
4秒前
Alpha完成签到,获得积分10
5秒前
大大发布了新的文献求助30
5秒前
翠翠发布了新的文献求助10
6秒前
半山发布了新的文献求助10
7秒前
7秒前
天天快乐应助CO2采纳,获得10
7秒前
隐形曼青应助junzilan采纳,获得10
8秒前
Dksido发布了新的文献求助10
8秒前
9秒前
思源应助卓哥采纳,获得10
9秒前
mysci完成签到,获得积分10
12秒前
13秒前
Quzhengkai发布了新的文献求助10
14秒前
14秒前
15秒前
落寞晓灵完成签到,获得积分10
15秒前
ORAzzz应助翠翠采纳,获得20
16秒前
zoe完成签到,获得积分10
16秒前
习习应助学术小白采纳,获得10
16秒前
17秒前
18秒前
tianny关注了科研通微信公众号
19秒前
19秒前
CO2发布了新的文献求助10
19秒前
桐桐应助zhangscience采纳,获得10
20秒前
求助发布了新的文献求助10
21秒前
buno应助zoe采纳,获得10
22秒前
junzilan发布了新的文献求助10
22秒前
22秒前
细品岁月完成签到 ,获得积分10
22秒前
细心书蕾完成签到 ,获得积分10
23秒前
无花果应助l11x29采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808