三碘化物
化学
光电流
碘化物
能量转换效率
表面光电压
光电化学
太阳能电池
光电解
光电化学电池
阳极
光电子学
光化学
电解质
电化学
无机化学
材料科学
色素敏化染料
电极
电解
光谱学
物理化学
物理
量子力学
作者
Sahar Daemi,Samhita Kaushik,Soumik Das,Thomas W. Hamann,Frank E. Osterloh
摘要
BiVO4 is an important photoanode material for water oxidation, but its photoelectrochemistry regarding the triiodide/iodide redox couple is not well understood. Here, we use a combination of open circuit potential measurements, photoelectrochemical scans, and liquid surface photovoltage spectroscopy (SPS) to confirm that BiVO4/triiodide/iodide electrolyte contacts produce up to 0.55 V photovoltage under 23 mW/cm-2 illumination from a 470 nm LED. Inspired by these results, we construct FTO/BiVO4/KI(I2)aq/Pt sandwich photoelectrochemical cells from electrochemically grown 0.5 × 0.5 cm2 BiVO4 and Mo-doped BiVO4 films. Under AM 1.5 illumination, the devices have up to 0.22% energy conversion efficiency, 0.32 V photovoltage, and 1.8 mA cm-2 photocurrent. Based on SPS, hole transfer to iodide is sufficiently fast to prevent the competing water oxidation reaction. Mo doping increases the incident photon-to-current efficiency to up to 55% (at 425 nm under front illumination) by improving the BiVO4 conductivity, but this comes at the expense of a lower photovoltage resulting from recombination at the Mo defects and a detrimental Schottky junction at the interface with FTO. Additional photovoltage losses are caused by the offset between the BiVO4 valence band edge and the triiodide/iodide electrochemical potential and by electron back transfer to iodide at the FTO back contact (shunting). Overall, this work provides the first example of a BiVO4-liquid photovoltaic cell and an analysis of its limitations. Even though the larger band gaps of metal oxides constrain their solar energy conversion efficiency, their transparency to visible light and deep valence bands makes them suitable for tandem photovoltaic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI