Hoax Detection on Social Media with Convolutional Neural Network (CNN) and Support Vector Machine (SVM)

支持向量机 人工智能 计算机科学 卷积神经网络 二元曲线 骗局 机器学习 特征提取 tf–国际设计公司 相似性(几何) 特征(语言学) 余弦相似度 模式识别(心理学) 三元曲线 期限(时间) 医学 语言学 哲学 物理 替代医学 病理 量子力学 图像(数学)
作者
Manuel Benedict,Erwin Budi Setiawan
标识
DOI:10.1109/icoict58202.2023.10262433
摘要

Hoax news has long been a problem for society that is quite worrying because receiving hoax news can change a person's point of view to something that is not good, the impact of which is detrimental to many individuals and groups of people. Machine learning and deep learning can be implemented to detect hoax news. Examples of methods used in previous studies are SVM (Support Vector Machine) and CNN (Convolutional Neural Network). This research proposes the application of the CNN and SVM methods. In addition, this research develops a CNN-SVM hybrid model, which is the uniqueness of this research. The dataset is sourced from Twitter which focuses on the Ferdy Sambo Case and the Kanjuruhan Tragedy that will occur in 2022. The dataset amounts to 25,325 and is divided into two with a splitting ratio of 90:10. After three algorithms was trained, they achieved excellent performance. This matter can be seen from the accuracy scores for the two methods, which managed to improve their performance after feature extraction and expansion were applied with TF-IDF (Term Frequency Inverse Document Frequency) feature extraction, unigram + bigram weighting, and feature expansion with GloVe (Global Vector for Word Representation). The highest performance model is the SVM model with the similarity top 1 and Tweet corpus (95.95% accuracy), followed by the hybrid CNN-SVM model with the similarity top 10 and Tweet + News corpus (95.79% accuracy) and CNN model with the similarity top 15 with Tweet + News corpus (95.11% accuracy).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
飘逸夜南完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
NexusExplorer应助Li采纳,获得10
2秒前
2秒前
3秒前
张斯瑞发布了新的文献求助10
4秒前
5秒前
荣耀发布了新的文献求助10
5秒前
111发布了新的文献求助10
6秒前
HCB1发布了新的文献求助10
6秒前
6秒前
6秒前
柒柒完成签到,获得积分10
8秒前
昏睡的傲珊完成签到 ,获得积分10
9秒前
10秒前
科研狗发布了新的文献求助10
10秒前
10秒前
姜丽发布了新的文献求助10
11秒前
12秒前
HCB1完成签到,获得积分10
12秒前
keke完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
tianbro发布了新的文献求助30
13秒前
15秒前
冷子旋发布了新的文献求助10
15秒前
小马甲应助cssfsa采纳,获得10
15秒前
caojie发布了新的文献求助10
15秒前
乐观的思卉完成签到,获得积分20
16秒前
16秒前
17秒前
传奇3应助烂漫以冬采纳,获得10
17秒前
wqh完成签到,获得积分10
17秒前
孤独旅者Dog完成签到 ,获得积分10
17秒前
蓝胖子完成签到,获得积分10
18秒前
Missing完成签到,获得积分10
18秒前
孤独旅者Dog关注了科研通微信公众号
20秒前
Zhou发布了新的文献求助10
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5141930
求助须知:如何正确求助?哪些是违规求助? 4340235
关于积分的说明 13516857
捐赠科研通 4180008
什么是DOI,文献DOI怎么找? 2292169
邀请新用户注册赠送积分活动 1292823
关于科研通互助平台的介绍 1235311