Lesion-Aware Contrastive Learning for Diabetic Retinopathy Diagnosis

计算机科学 假阳性悖论 人工智能 判别式 假阳性和假阴性 糖尿病性视网膜病变 病变 深度学习 模式识别(心理学) 分级(工程) 机器学习 监督学习 眼底(子宫) 特征学习 医学 放射科 病理 糖尿病 内分泌学 土木工程 人工神经网络 工程类
作者
Shuai Cheng,Qingshan Hou,Peng Cao,Jinzhu Yang,Xiaoli Liu,Osmar R. Zäıane
出处
期刊:Lecture Notes in Computer Science 卷期号:: 671-681 被引量:1
标识
DOI:10.1007/978-3-031-43990-2_63
摘要

Early diagnosis and screening of diabetic retinopathy are critical in reducing the risk of vision loss in patients. However, in a real clinical situation, manual annotation of lesion regions in fundus images is time-consuming. Contrastive learning(CL) has recently shown its strong ability for self-supervised representation learning due to its ability of learning the invariant representation without any extra labelled data. In this study, we aim to investigate how CL can be applied to extract lesion features in medical images. However, can the direct introduction of CL into the deep learning framework enhance the representation ability of lesion characteristics? We show that the answer is no. Due to the lesion-specific regions being insignificant in medical images, directly introducing CL would inevitably lead to the effects of false negatives, limiting the ability of the discriminative representation learning. Essentially, two key issues should be considered: (1) How to construct positives and negatives to avoid the problem of false negatives? (2) How to exploit the hard negatives for promoting the representation quality of lesions? In this work, we present a lesion-aware CL framework for DR grading. Specifically, we design a new generating positives and negatives strategy to overcome the false negatives problem in fundus images. Furthermore, a dynamic hard negatives mining method based on knowledge distillation is proposed in order to improve the quality of the learned embeddings. Extensive experimental results show that our method significantly advances state-of-the-art DR grading methods to a considerable 88.0%ACC/86.8% Kappa on the EyePACS benchmark dataset. Our code is available at https://github.com/IntelliDAL/Image .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实大船完成签到,获得积分10
刚刚
蜗牛撵大象完成签到,获得积分10
刚刚
1秒前
sun发布了新的文献求助10
1秒前
1秒前
二二二发布了新的文献求助10
2秒前
开心的傲安完成签到,获得积分20
2秒前
麻麻完成签到,获得积分20
2秒前
DDTT完成签到,获得积分10
3秒前
霸气的念云完成签到,获得积分10
3秒前
Orange应助欢呼小蚂蚁采纳,获得10
3秒前
3秒前
SQ完成签到,获得积分10
4秒前
4秒前
飞跃海龙完成签到 ,获得积分10
4秒前
ufuon发布了新的文献求助10
5秒前
momo完成签到,获得积分10
6秒前
赘婿应助二二二采纳,获得10
6秒前
JamesPei应助HongJiang采纳,获得10
6秒前
clarkq完成签到,获得积分10
7秒前
orixero应助LIU采纳,获得10
7秒前
经法发布了新的文献求助10
7秒前
不吃橘子完成签到,获得积分10
7秒前
Cheryy完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
ding应助哈哈哈哈采纳,获得10
9秒前
Draeck发布了新的文献求助10
9秒前
kingwhitewing发布了新的文献求助10
9秒前
10秒前
clarkq发布了新的文献求助10
10秒前
10秒前
GGZ完成签到,获得积分10
10秒前
15860936613完成签到 ,获得积分10
10秒前
可爱的函函应助a方舟采纳,获得10
10秒前
11秒前
ee关闭了ee文献求助
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678