Lesion-Aware Contrastive Learning for Diabetic Retinopathy Diagnosis

计算机科学 假阳性悖论 人工智能 判别式 假阳性和假阴性 糖尿病性视网膜病变 病变 深度学习 模式识别(心理学) 分级(工程) 机器学习 监督学习 眼底(子宫) 特征学习 医学 放射科 病理 糖尿病 内分泌学 土木工程 人工神经网络 工程类
作者
Shuai Cheng,Qingshan Hou,Peng Cao,Jinzhu Yang,Xiaoli Liu,Osmar R. Zäıane
出处
期刊:Lecture Notes in Computer Science 卷期号:: 671-681 被引量:1
标识
DOI:10.1007/978-3-031-43990-2_63
摘要

Early diagnosis and screening of diabetic retinopathy are critical in reducing the risk of vision loss in patients. However, in a real clinical situation, manual annotation of lesion regions in fundus images is time-consuming. Contrastive learning(CL) has recently shown its strong ability for self-supervised representation learning due to its ability of learning the invariant representation without any extra labelled data. In this study, we aim to investigate how CL can be applied to extract lesion features in medical images. However, can the direct introduction of CL into the deep learning framework enhance the representation ability of lesion characteristics? We show that the answer is no. Due to the lesion-specific regions being insignificant in medical images, directly introducing CL would inevitably lead to the effects of false negatives, limiting the ability of the discriminative representation learning. Essentially, two key issues should be considered: (1) How to construct positives and negatives to avoid the problem of false negatives? (2) How to exploit the hard negatives for promoting the representation quality of lesions? In this work, we present a lesion-aware CL framework for DR grading. Specifically, we design a new generating positives and negatives strategy to overcome the false negatives problem in fundus images. Furthermore, a dynamic hard negatives mining method based on knowledge distillation is proposed in order to improve the quality of the learned embeddings. Extensive experimental results show that our method significantly advances state-of-the-art DR grading methods to a considerable 88.0%ACC/86.8% Kappa on the EyePACS benchmark dataset. Our code is available at https://github.com/IntelliDAL/Image .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助珺儿采纳,获得10
刚刚
yu小鱼完成签到,获得积分10
刚刚
Zhao_Kai完成签到 ,获得积分10
1秒前
沉默的冬莲完成签到 ,获得积分10
2秒前
4秒前
5秒前
CNcattle发布了新的文献求助10
8秒前
欢喜宛丝完成签到,获得积分10
8秒前
糖果发布了新的文献求助10
9秒前
kw发布了新的文献求助20
9秒前
龙1发布了新的文献求助10
10秒前
11秒前
12秒前
沈航阿豪up完成签到 ,获得积分10
13秒前
sunzhou2008完成签到,获得积分10
14秒前
sbmanishi完成签到,获得积分20
14秒前
小蘑菇应助云起龙都采纳,获得10
16秒前
yi发布了新的文献求助10
17秒前
17秒前
珺儿发布了新的文献求助10
18秒前
19秒前
CNcattle完成签到,获得积分20
19秒前
mmr发布了新的文献求助10
19秒前
Ava应助龙1采纳,获得10
20秒前
NexusExplorer应助小木子采纳,获得10
21秒前
顾矜应助小木子采纳,获得10
21秒前
稳住完成签到,获得积分10
21秒前
23秒前
24秒前
yi完成签到,获得积分10
24秒前
Metbutterly发布了新的文献求助10
24秒前
zxj完成签到 ,获得积分20
25秒前
盗糖小鸭发布了新的文献求助10
25秒前
hucchongzi应助柯幼萱采纳,获得50
26秒前
26秒前
26秒前
WYX发布了新的文献求助10
27秒前
乐观德地应助糖果采纳,获得10
27秒前
Teirow完成签到 ,获得积分10
28秒前
FashionBoy应助恩雁采纳,获得50
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112