已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Lesion-Aware Contrastive Learning for Diabetic Retinopathy Diagnosis

计算机科学 假阳性悖论 人工智能 判别式 假阳性和假阴性 糖尿病性视网膜病变 病变 深度学习 模式识别(心理学) 分级(工程) 机器学习 监督学习 眼底(子宫) 特征学习 医学 放射科 病理 内分泌学 糖尿病 土木工程 工程类 人工神经网络
作者
Shuai Cheng,Qingshan Hou,Peng Cao,Jinzhu Yang,Xiaoli Liu,Osmar R. Zäıane
出处
期刊:Lecture Notes in Computer Science 卷期号:: 671-681 被引量:1
标识
DOI:10.1007/978-3-031-43990-2_63
摘要

Early diagnosis and screening of diabetic retinopathy are critical in reducing the risk of vision loss in patients. However, in a real clinical situation, manual annotation of lesion regions in fundus images is time-consuming. Contrastive learning(CL) has recently shown its strong ability for self-supervised representation learning due to its ability of learning the invariant representation without any extra labelled data. In this study, we aim to investigate how CL can be applied to extract lesion features in medical images. However, can the direct introduction of CL into the deep learning framework enhance the representation ability of lesion characteristics? We show that the answer is no. Due to the lesion-specific regions being insignificant in medical images, directly introducing CL would inevitably lead to the effects of false negatives, limiting the ability of the discriminative representation learning. Essentially, two key issues should be considered: (1) How to construct positives and negatives to avoid the problem of false negatives? (2) How to exploit the hard negatives for promoting the representation quality of lesions? In this work, we present a lesion-aware CL framework for DR grading. Specifically, we design a new generating positives and negatives strategy to overcome the false negatives problem in fundus images. Furthermore, a dynamic hard negatives mining method based on knowledge distillation is proposed in order to improve the quality of the learned embeddings. Extensive experimental results show that our method significantly advances state-of-the-art DR grading methods to a considerable 88.0%ACC/86.8% Kappa on the EyePACS benchmark dataset. Our code is available at https://github.com/IntelliDAL/Image .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zgl完成签到,获得积分10
刚刚
易寒完成签到,获得积分10
1秒前
2秒前
隐形曼青应助SunHY采纳,获得10
2秒前
eueurhj发布了新的文献求助60
3秒前
sean完成签到,获得积分10
3秒前
7秒前
7秒前
8秒前
8秒前
9秒前
Able完成签到,获得积分10
10秒前
10秒前
Coinish丶Fuhua完成签到,获得积分10
11秒前
11秒前
负责怀莲完成签到,获得积分10
11秒前
12秒前
fu发布了新的文献求助10
13秒前
SunHY发布了新的文献求助10
13秒前
大面包发布了新的文献求助10
15秒前
tt发布了新的文献求助10
15秒前
负责怀莲发布了新的文献求助10
16秒前
体贴绝音发布了新的文献求助10
16秒前
SHAO应助SunHY采纳,获得30
18秒前
19秒前
orixero应助杨行肖采纳,获得10
24秒前
七爷发布了新的文献求助10
24秒前
25秒前
上官若男应助tt采纳,获得10
26秒前
魁梧的人达完成签到,获得积分10
28秒前
29秒前
星星应助体贴绝音采纳,获得10
29秒前
Jiang应助fu采纳,获得10
29秒前
QTQ完成签到,获得积分10
31秒前
葛子文完成签到 ,获得积分10
31秒前
zhou国兵发布了新的文献求助10
35秒前
活力书包完成签到 ,获得积分10
37秒前
38秒前
zhou国兵完成签到,获得积分10
40秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989857
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255679
捐赠科研通 3270758
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882195
科研通“疑难数据库(出版商)”最低求助积分说明 809208