氧化应激
骨质疏松症
骨关节炎
细胞生物学
医学
叙述性评论
神经科学
生物信息学
癌症研究
生物
内科学
病理
重症监护医学
替代医学
作者
Jana Riegger,Astrid Schoppa,Leonie Ruths,Melanie Haffner‐Luntzer,Anita Ignatius
标识
DOI:10.1186/s11658-023-00489-y
摘要
Abstract During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
科研通智能强力驱动
Strongly Powered by AbleSci AI