Flexible rotor unbalance fault location method based on transfer learning from simulation to experiment data

转子(电动) 振动 控制理论(社会学) 职位(财务) 断层(地质) 计算机科学 动平衡 直升机旋翼 工程类 人工智能 物理 声学 机械工程 经济 地震学 财务 地质学 控制(管理)
作者
Shuo Han,Zihuimin Wang,Hao Zhang,Fanyu Zhang,Qingkai Han
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125053-125053 被引量:1
标识
DOI:10.1088/1361-6501/acf67e
摘要

Abstract In the study of the high-speed dynamic balance of flexible rotors, rotor unbalance positioning is a challenging topic. Particularly for slender rotors, the axial position of the unbalance has an important influence on the high-speed dynamic balance. The unbalance at different axial positions is not the same or even opposite in different rotor mode vibration behaviors. If the unbalance position of a rotor can be identified, the actual unbalance of the rotor can be reduced from the root. This balance method has the same effect in each vibration mode of the rotor; hence, low-speed dynamic balance can be realized to replace high-speed dynamic balance, considerably saving on costs. Deep learning based on few labeled samples can achieve good results for the identification of unbalanced positions; however, there are infinite potential positions of unbalance in the actual rotor. It is difficult to collect sufficient labeled samples to train a reliable intelligent diagnostic model. Fortunately, a large number of rotor vibration datasets labeled with different unbalance positions are available using the rotor dynamic model, and the unbalance position data calculated using the dynamic model contain diagnostic knowledge related to the rotor unbalance position data measured in the rig. Hence, inspired by transfer learning, this study proposed a transfer learning method using dynamic model simulation and experiment data for flexible rotor unbalance fault location. Cross-domain deep transfer recognition of rotor unbalance position was realized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向山雁发布了新的文献求助10
1秒前
edisondc发布了新的文献求助10
1秒前
郭大雨发布了新的文献求助10
1秒前
2秒前
dangdang应助朱信姿采纳,获得10
2秒前
ccc发布了新的文献求助20
2秒前
肖雪依发布了新的文献求助10
2秒前
迅速的秋珊完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
华仔应助企鹅采纳,获得10
3秒前
3秒前
3秒前
RJ应助徐sir采纳,获得10
3秒前
4秒前
EnjieYu完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
鱼年年完成签到,获得积分10
5秒前
niuniu完成签到,获得积分10
6秒前
FashionBoy应助bc采纳,获得30
6秒前
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
研友_ZAxQqn完成签到,获得积分10
7秒前
ShawnJohn应助科研通管家采纳,获得20
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
pfffff发布了新的文献求助40
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
AN应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
Garlic发布了新的文献求助10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719543
求助须知:如何正确求助?哪些是违规求助? 5256663
关于积分的说明 15288927
捐赠科研通 4869380
什么是DOI,文献DOI怎么找? 2614754
邀请新用户注册赠送积分活动 1564750
关于科研通互助平台的介绍 1521972