Flexible rotor unbalance fault location method based on transfer learning from simulation to experiment data

转子(电动) 振动 控制理论(社会学) 职位(财务) 断层(地质) 计算机科学 动平衡 直升机旋翼 工程类 人工智能 物理 声学 机械工程 经济 地震学 财务 地质学 控制(管理)
作者
Shuo Han,Zihuimin Wang,Hao Zhang,Fanyu Zhang,Qingkai Han
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (12): 125053-125053 被引量:1
标识
DOI:10.1088/1361-6501/acf67e
摘要

Abstract In the study of the high-speed dynamic balance of flexible rotors, rotor unbalance positioning is a challenging topic. Particularly for slender rotors, the axial position of the unbalance has an important influence on the high-speed dynamic balance. The unbalance at different axial positions is not the same or even opposite in different rotor mode vibration behaviors. If the unbalance position of a rotor can be identified, the actual unbalance of the rotor can be reduced from the root. This balance method has the same effect in each vibration mode of the rotor; hence, low-speed dynamic balance can be realized to replace high-speed dynamic balance, considerably saving on costs. Deep learning based on few labeled samples can achieve good results for the identification of unbalanced positions; however, there are infinite potential positions of unbalance in the actual rotor. It is difficult to collect sufficient labeled samples to train a reliable intelligent diagnostic model. Fortunately, a large number of rotor vibration datasets labeled with different unbalance positions are available using the rotor dynamic model, and the unbalance position data calculated using the dynamic model contain diagnostic knowledge related to the rotor unbalance position data measured in the rig. Hence, inspired by transfer learning, this study proposed a transfer learning method using dynamic model simulation and experiment data for flexible rotor unbalance fault location. Cross-domain deep transfer recognition of rotor unbalance position was realized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
imagine完成签到,获得积分10
2秒前
4秒前
任性的向薇完成签到,获得积分10
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
NICAI应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
Ava应助科研通管家采纳,获得20
7秒前
ding应助科研通管家采纳,获得10
7秒前
小葵花完成签到 ,获得积分10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
拼搏应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
小新应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
Verity应助科研通管家采纳,获得10
8秒前
小新应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
10秒前
韩涵完成签到 ,获得积分10
12秒前
13秒前
adoudoo完成签到 ,获得积分10
14秒前
Jodie发布了新的文献求助10
18秒前
GaoChenxi完成签到 ,获得积分10
18秒前
大芳儿完成签到,获得积分10
21秒前
shuide完成签到,获得积分20
22秒前
深情安青应助莉莉子采纳,获得10
23秒前
yara完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555