已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Method of User Travel Mode Recognition Based on Convolutional Neural Network and Cell Phone Signaling Data

卷积神经网络 计算机科学 移动电话 特征(语言学) 背景(考古学) 特征提取 弹道 数据挖掘 大数据 鉴定(生物学) 人工神经网络 模式(计算机接口) 人工智能 地理 人机交互 电信 哲学 语言学 物理 植物 考古 天文 生物
作者
Zhi Xian Yang,Zhiqiang Xie,Zhiqun Hou,Chengtao Ji,Zhanting Deng,Rong Li,Xiaodong Wei,Lei Zhao,Shu Ni
出处
期刊:Electronics [MDPI AG]
卷期号:12 (17): 3698-3698
标识
DOI:10.3390/electronics12173698
摘要

As urbanization accelerates, traffic congestion in cities has become a problem. Therefore, accurately identifying urban residents’ travel patterns is crucial for urban traffic planning and intelligent transportation systems. In this study, a convolutional neural network (CNN) approach based on multichannel feature extraction using mobile phone signaling data to identify user travel modes is proposed. Here, a trajectory generation method was designed for five types of travel modes. By designing a spatiotemporal threshold screening method, anomalies were identified and processed, combined with the feature analysis method, key points in the signaling extracted, the travel trajectory sliced, and travel sub-trajectory data generated. Next, in the travel mode identification stage, road network information was introduced to improve localization accuracy, and the method for calculating feature values improved. A user travel feature dataset was generated by calculating the feature values, and the travel modes represented by each class were classified and recognized based on the CNN method. Satisfactory results were achieved through experiments using mobile phone signaling and field research data in Kunming, China. The experimental results showed that analysis based on mobile phone signaling data could classify, identify, and obtain different travel category modes. This method’s accuracy was 84.7%. The method provided a feasible way of identifying travel patterns in the context of smart cities and big data, providing strong support for urban transport planning and management, and has the potential for wider application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
cheng zou完成签到,获得积分10
7秒前
好了没了发布了新的文献求助10
7秒前
清新的芷完成签到 ,获得积分10
8秒前
11秒前
12秒前
徐继军完成签到 ,获得积分10
13秒前
快乐星球完成签到 ,获得积分10
14秒前
15秒前
xiaogui发布了新的文献求助10
15秒前
光撒盐完成签到,获得积分10
15秒前
如是空者完成签到 ,获得积分10
17秒前
23秒前
24秒前
wl完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
所所应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
pluto应助xiaogui采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
25秒前
完美世界应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
CipherSage应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
圆滚滚完成签到,获得积分10
27秒前
磨磨唧唧应助风趣的靖荷采纳,获得10
28秒前
yf发布了新的文献求助10
28秒前
wangjiajia123完成签到,获得积分10
29秒前
LSS发布了新的文献求助10
29秒前
liu完成签到,获得积分10
31秒前
小二郎应助乐悠采纳,获得10
33秒前
含糊的文涛关注了科研通微信公众号
33秒前
NexusExplorer应助ayw采纳,获得10
34秒前
liu发布了新的文献求助10
35秒前
36秒前
38秒前
SYozi发布了新的文献求助10
40秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234409
求助须知:如何正确求助?哪些是违规求助? 2880758
关于积分的说明 8216901
捐赠科研通 2548341
什么是DOI,文献DOI怎么找? 1377698
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304