Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study

医学 肾细胞癌 接收机工作特性 血管平滑肌脂肪瘤 放射科 回顾性队列研究 霍恩斯菲尔德秤 肾透明细胞癌 核医学 计算机断层摄影术 内科学
作者
Haohua Yao,Tian Li,Xi Liu,Shurong Li,Yuhang Chen,Jiazheng Cao,Zhiling Zhang,Zhenhua Chen,Zihao Feng,Quanhui Xu,Jiangquan Zhu,Yinghan Wang,Yan Guo,Wei Chen,Caixia Li,Peixing Li,Huanjun Wang,Junhang Luo
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:149 (17): 15827-15838 被引量:5
标识
DOI:10.1007/s00432-023-05339-0
摘要

Abstract Purpose There are undetectable levels of fat in fat-poor angiomyolipoma. Thus, it is often misdiagnosed as renal cell carcinoma. We aimed to develop and evaluate a multichannel deep learning model for differentiating fat-poor angiomyolipoma (fp-AML) from renal cell carcinoma (RCC). Methods This two-center retrospective study included 320 patients from the First Affiliated Hospital of Sun Yat-Sen University (FAHSYSU) and 132 patients from the Sun Yat-Sen University Cancer Center (SYSUCC). Data from patients at FAHSYSU were divided into a development dataset (n = 267) and a hold-out dataset (n = 53). The development dataset was used to obtain the optimal combination of CT modality and input channel. The hold-out dataset and SYSUCC dataset were used for independent internal and external validation, respectively. Results In the development phase, models trained on unenhanced CT images performed significantly better than those trained on enhanced CT images based on the fivefold cross-validation. The best patient-level performance, with an average area under the receiver operating characteristic curve (AUC) of 0.951 ± 0.026 (mean ± SD), was achieved using the “unenhanced CT and 7-channel” model, which was finally selected as the optimal model. In the independent internal and external validation, AUCs of 0.966 (95% CI 0.919–1.000) and 0.898 (95% CI 0.824–0.972), respectively, were obtained using the optimal model. In addition, the performance of this model was better on large tumors (≥ 40 mm) in both internal and external validation. Conclusion The promising results suggest that our multichannel deep learning classifier based on unenhanced whole-tumor CT images is a highly useful tool for differentiating fp-AML from RCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
火星上以柳完成签到,获得积分10
刚刚
铅笔刀完成签到,获得积分10
刚刚
77完成签到,获得积分10
3秒前
知北完成签到,获得积分10
4秒前
5秒前
李李李发布了新的文献求助10
7秒前
8秒前
hwb完成签到,获得积分20
9秒前
第八维完成签到,获得积分10
10秒前
田様应助尊敬寒松采纳,获得10
11秒前
11秒前
12秒前
Hou完成签到 ,获得积分10
13秒前
冲鸭666完成签到,获得积分20
17秒前
orixero应助慈祥的爆米花采纳,获得10
17秒前
17秒前
17秒前
wubuking完成签到 ,获得积分10
19秒前
尊敬寒松发布了新的文献求助10
22秒前
李李李发布了新的文献求助10
23秒前
第八维发布了新的文献求助10
25秒前
牛文文发布了新的文献求助10
28秒前
糖醋排骨完成签到,获得积分20
28秒前
28秒前
Hello应助fengdengjin采纳,获得10
30秒前
yzhilson完成签到 ,获得积分10
30秒前
勤劳致富发布了新的文献求助10
31秒前
李爱国应助美丽的凌蝶采纳,获得30
31秒前
李健的小迷弟应助阿明采纳,获得10
31秒前
SYLH应助热情的笑白采纳,获得20
31秒前
搜集达人应助帅气灭绝采纳,获得10
32秒前
32秒前
田様应助第八维采纳,获得10
33秒前
34秒前
35秒前
35秒前
陈哥发布了新的文献求助10
38秒前
38秒前
结实的幽魂完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993793
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265507
捐赠科研通 3274273
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712