已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study

医学 肾细胞癌 接收机工作特性 血管平滑肌脂肪瘤 放射科 回顾性队列研究 霍恩斯菲尔德秤 肾透明细胞癌 核医学 计算机断层摄影术 内科学
作者
Haohua Yao,Tian Li,Xi Liu,Shurong Li,Yuhang Chen,Jiazheng Cao,Zhiling Zhang,Zhenhua Chen,Zihao Feng,Quanhui Xu,Jiangquan Zhu,Yinghan Wang,Yan Guo,Wei Chen,Caixia Li,Peixing Li,Huanjun Wang,Junhang Luo
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Science+Business Media]
卷期号:149 (17): 15827-15838 被引量:5
标识
DOI:10.1007/s00432-023-05339-0
摘要

Abstract Purpose There are undetectable levels of fat in fat-poor angiomyolipoma. Thus, it is often misdiagnosed as renal cell carcinoma. We aimed to develop and evaluate a multichannel deep learning model for differentiating fat-poor angiomyolipoma (fp-AML) from renal cell carcinoma (RCC). Methods This two-center retrospective study included 320 patients from the First Affiliated Hospital of Sun Yat-Sen University (FAHSYSU) and 132 patients from the Sun Yat-Sen University Cancer Center (SYSUCC). Data from patients at FAHSYSU were divided into a development dataset (n = 267) and a hold-out dataset (n = 53). The development dataset was used to obtain the optimal combination of CT modality and input channel. The hold-out dataset and SYSUCC dataset were used for independent internal and external validation, respectively. Results In the development phase, models trained on unenhanced CT images performed significantly better than those trained on enhanced CT images based on the fivefold cross-validation. The best patient-level performance, with an average area under the receiver operating characteristic curve (AUC) of 0.951 ± 0.026 (mean ± SD), was achieved using the “unenhanced CT and 7-channel” model, which was finally selected as the optimal model. In the independent internal and external validation, AUCs of 0.966 (95% CI 0.919–1.000) and 0.898 (95% CI 0.824–0.972), respectively, were obtained using the optimal model. In addition, the performance of this model was better on large tumors (≥ 40 mm) in both internal and external validation. Conclusion The promising results suggest that our multichannel deep learning classifier based on unenhanced whole-tumor CT images is a highly useful tool for differentiating fp-AML from RCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Shuhe_Gong完成签到 ,获得积分10
1秒前
发发发布了新的文献求助10
1秒前
ryanfeng完成签到,获得积分0
2秒前
3秒前
文静的可仁完成签到,获得积分10
3秒前
Haimian完成签到 ,获得积分10
3秒前
nk完成签到 ,获得积分10
6秒前
123456789完成签到,获得积分10
6秒前
dd发布了新的文献求助10
6秒前
dracovu完成签到,获得积分10
7秒前
Yy完成签到 ,获得积分10
8秒前
8秒前
克劳修斯完成签到 ,获得积分10
8秒前
Auralis完成签到 ,获得积分10
9秒前
13686682012发布了新的文献求助10
9秒前
土豪的新儿完成签到 ,获得积分10
9秒前
dax大雄完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
发发发布了新的文献求助10
14秒前
晨晨完成签到 ,获得积分10
15秒前
杰哥完成签到 ,获得积分10
15秒前
糊涂的皮皮虾完成签到 ,获得积分10
17秒前
hhan发布了新的文献求助20
18秒前
碧蓝的夏天完成签到,获得积分10
18秒前
18秒前
刻苦藏今发布了新的文献求助30
19秒前
LArry发布了新的文献求助10
20秒前
十八完成签到 ,获得积分10
20秒前
LELE完成签到 ,获得积分10
24秒前
25秒前
26秒前
细腻鸭子发布了新的文献求助10
27秒前
雪酪芋泥球完成签到 ,获得积分10
27秒前
27秒前
明澜完成签到 ,获得积分20
28秒前
wisher完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610218
求助须知:如何正确求助?哪些是违规求助? 4016237
关于积分的说明 12434819
捐赠科研通 3697797
什么是DOI,文献DOI怎么找? 2038994
邀请新用户注册赠送积分活动 1071906
科研通“疑难数据库(出版商)”最低求助积分说明 955582