亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study

医学 肾细胞癌 接收机工作特性 血管平滑肌脂肪瘤 放射科 回顾性队列研究 霍恩斯菲尔德秤 肾透明细胞癌 核医学 计算机断层摄影术 内科学
作者
Haohua Yao,Tian Li,Xi Liu,Shurong Li,Yuhang Chen,Jiazheng Cao,Zhiling Zhang,Zhenhua Chen,Zihao Feng,Quanhui Xu,Jiangquan Zhu,Yinghan Wang,Yan Guo,Wei Chen,Caixia Li,Peixing Li,Huanjun Wang,Junhang Luo
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:149 (17): 15827-15838 被引量:5
标识
DOI:10.1007/s00432-023-05339-0
摘要

Abstract Purpose There are undetectable levels of fat in fat-poor angiomyolipoma. Thus, it is often misdiagnosed as renal cell carcinoma. We aimed to develop and evaluate a multichannel deep learning model for differentiating fat-poor angiomyolipoma (fp-AML) from renal cell carcinoma (RCC). Methods This two-center retrospective study included 320 patients from the First Affiliated Hospital of Sun Yat-Sen University (FAHSYSU) and 132 patients from the Sun Yat-Sen University Cancer Center (SYSUCC). Data from patients at FAHSYSU were divided into a development dataset (n = 267) and a hold-out dataset (n = 53). The development dataset was used to obtain the optimal combination of CT modality and input channel. The hold-out dataset and SYSUCC dataset were used for independent internal and external validation, respectively. Results In the development phase, models trained on unenhanced CT images performed significantly better than those trained on enhanced CT images based on the fivefold cross-validation. The best patient-level performance, with an average area under the receiver operating characteristic curve (AUC) of 0.951 ± 0.026 (mean ± SD), was achieved using the “unenhanced CT and 7-channel” model, which was finally selected as the optimal model. In the independent internal and external validation, AUCs of 0.966 (95% CI 0.919–1.000) and 0.898 (95% CI 0.824–0.972), respectively, were obtained using the optimal model. In addition, the performance of this model was better on large tumors (≥ 40 mm) in both internal and external validation. Conclusion The promising results suggest that our multichannel deep learning classifier based on unenhanced whole-tumor CT images is a highly useful tool for differentiating fp-AML from RCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意秋珊完成签到 ,获得积分10
17秒前
32秒前
共享精神应助LucyMartinez采纳,获得10
34秒前
39秒前
LucyMartinez发布了新的文献求助10
46秒前
47秒前
科研通AI6.1应助utopia采纳,获得10
49秒前
52秒前
玩命的无施完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
1分钟前
lx完成签到 ,获得积分10
1分钟前
动听隶发布了新的文献求助10
1分钟前
1分钟前
utopia发布了新的文献求助10
1分钟前
bkagyin应助花椰菜采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
轻松戎发布了新的文献求助10
1分钟前
fawr完成签到 ,获得积分10
2分钟前
完美迎梦发布了新的文献求助10
2分钟前
天天快乐应助轻松戎采纳,获得10
2分钟前
轻松戎完成签到,获得积分10
2分钟前
中西西完成签到 ,获得积分10
2分钟前
动听隶完成签到,获得积分10
2分钟前
utopia完成签到,获得积分10
2分钟前
xaopng完成签到,获得积分10
2分钟前
手拿把掐吴完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高小羊发布了新的文献求助10
2分钟前
无000发布了新的文献求助10
2分钟前
安详的从筠完成签到,获得积分10
2分钟前
高小羊完成签到,获得积分10
2分钟前
3分钟前
小马甲应助LucyMartinez采纳,获得10
3分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746626
求助须知:如何正确求助?哪些是违规求助? 5436890
关于积分的说明 15355697
捐赠科研通 4886684
什么是DOI,文献DOI怎么找? 2627335
邀请新用户注册赠送积分活动 1575819
关于科研通互助平台的介绍 1532571