Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study

医学 肾细胞癌 接收机工作特性 血管平滑肌脂肪瘤 放射科 回顾性队列研究 霍恩斯菲尔德秤 肾透明细胞癌 核医学 计算机断层摄影术 内科学
作者
Haohua Yao,Tian Li,Xi Liu,Shurong Li,Yuhang Chen,Jiazheng Cao,Zhiling Zhang,Zhenhua Chen,Zihao Feng,Quanhui Xu,Jiangquan Zhu,Yinghan Wang,Yan Guo,Wei Chen,Caixia Li,Peixing Li,Huanjun Wang,Junhang Luo
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:149 (17): 15827-15838 被引量:2
标识
DOI:10.1007/s00432-023-05339-0
摘要

Abstract Purpose There are undetectable levels of fat in fat-poor angiomyolipoma. Thus, it is often misdiagnosed as renal cell carcinoma. We aimed to develop and evaluate a multichannel deep learning model for differentiating fat-poor angiomyolipoma (fp-AML) from renal cell carcinoma (RCC). Methods This two-center retrospective study included 320 patients from the First Affiliated Hospital of Sun Yat-Sen University (FAHSYSU) and 132 patients from the Sun Yat-Sen University Cancer Center (SYSUCC). Data from patients at FAHSYSU were divided into a development dataset (n = 267) and a hold-out dataset (n = 53). The development dataset was used to obtain the optimal combination of CT modality and input channel. The hold-out dataset and SYSUCC dataset were used for independent internal and external validation, respectively. Results In the development phase, models trained on unenhanced CT images performed significantly better than those trained on enhanced CT images based on the fivefold cross-validation. The best patient-level performance, with an average area under the receiver operating characteristic curve (AUC) of 0.951 ± 0.026 (mean ± SD), was achieved using the “unenhanced CT and 7-channel” model, which was finally selected as the optimal model. In the independent internal and external validation, AUCs of 0.966 (95% CI 0.919–1.000) and 0.898 (95% CI 0.824–0.972), respectively, were obtained using the optimal model. In addition, the performance of this model was better on large tumors (≥ 40 mm) in both internal and external validation. Conclusion The promising results suggest that our multichannel deep learning classifier based on unenhanced whole-tumor CT images is a highly useful tool for differentiating fp-AML from RCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮名半生完成签到,获得积分10
1秒前
嘚咘嘚嘚发布了新的文献求助10
1秒前
2秒前
3秒前
扶光完成签到 ,获得积分10
4秒前
梓墨发布了新的文献求助10
4秒前
李健应助蕾蕾采纳,获得10
5秒前
jayus完成签到,获得积分10
5秒前
微笑凡之发布了新的文献求助30
6秒前
李海平发布了新的文献求助10
6秒前
6秒前
7秒前
一粟的粉r完成签到 ,获得积分10
8秒前
大淼完成签到,获得积分20
9秒前
半夏完成签到 ,获得积分10
9秒前
10秒前
10秒前
小瑞发布了新的文献求助30
10秒前
1763290789发布了新的文献求助10
12秒前
无语的从云完成签到,获得积分10
13秒前
13秒前
14秒前
隐形曼青应助干之桃采纳,获得10
14秒前
14秒前
JiangY完成签到,获得积分10
14秒前
16秒前
16秒前
朴实的纸飞机完成签到 ,获得积分10
17秒前
Yuzu应助An采纳,获得30
18秒前
YI_ZHOU_YU发布了新的文献求助10
19秒前
zz发布了新的文献求助10
20秒前
科研通AI2S应助11采纳,获得10
21秒前
zhangxiaodan完成签到,获得积分10
21秒前
Jeff发布了新的文献求助10
21秒前
刘雨森完成签到,获得积分10
21秒前
CipherSage应助594采纳,获得10
22秒前
22秒前
Akim应助phil采纳,获得10
24秒前
搜集达人应助听雨家教采纳,获得10
25秒前
华仔应助听雨家教采纳,获得10
25秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3414391
求助须知:如何正确求助?哪些是违规求助? 3016498
关于积分的说明 8876859
捐赠科研通 2704297
什么是DOI,文献DOI怎么找? 1482649
科研通“疑难数据库(出版商)”最低求助积分说明 685486
邀请新用户注册赠送积分活动 680276