亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study

医学 肾细胞癌 接收机工作特性 血管平滑肌脂肪瘤 放射科 回顾性队列研究 霍恩斯菲尔德秤 肾透明细胞癌 核医学 计算机断层摄影术 内科学
作者
Haohua Yao,Tian Li,Xi Liu,Shurong Li,Yuhang Chen,Jiazheng Cao,Zhiling Zhang,Zhenhua Chen,Zihao Feng,Quanhui Xu,Jiangquan Zhu,Yinghan Wang,Yan Guo,Wei Chen,Caixia Li,Peixing Li,Huanjun Wang,Junhang Luo
出处
期刊:Journal of Cancer Research and Clinical Oncology [Springer Nature]
卷期号:149 (17): 15827-15838 被引量:5
标识
DOI:10.1007/s00432-023-05339-0
摘要

Abstract Purpose There are undetectable levels of fat in fat-poor angiomyolipoma. Thus, it is often misdiagnosed as renal cell carcinoma. We aimed to develop and evaluate a multichannel deep learning model for differentiating fat-poor angiomyolipoma (fp-AML) from renal cell carcinoma (RCC). Methods This two-center retrospective study included 320 patients from the First Affiliated Hospital of Sun Yat-Sen University (FAHSYSU) and 132 patients from the Sun Yat-Sen University Cancer Center (SYSUCC). Data from patients at FAHSYSU were divided into a development dataset (n = 267) and a hold-out dataset (n = 53). The development dataset was used to obtain the optimal combination of CT modality and input channel. The hold-out dataset and SYSUCC dataset were used for independent internal and external validation, respectively. Results In the development phase, models trained on unenhanced CT images performed significantly better than those trained on enhanced CT images based on the fivefold cross-validation. The best patient-level performance, with an average area under the receiver operating characteristic curve (AUC) of 0.951 ± 0.026 (mean ± SD), was achieved using the “unenhanced CT and 7-channel” model, which was finally selected as the optimal model. In the independent internal and external validation, AUCs of 0.966 (95% CI 0.919–1.000) and 0.898 (95% CI 0.824–0.972), respectively, were obtained using the optimal model. In addition, the performance of this model was better on large tumors (≥ 40 mm) in both internal and external validation. Conclusion The promising results suggest that our multichannel deep learning classifier based on unenhanced whole-tumor CT images is a highly useful tool for differentiating fp-AML from RCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
搜集达人应助懒回顾采纳,获得10
4秒前
郭郭完成签到 ,获得积分10
5秒前
饼饼大王完成签到,获得积分10
5秒前
pliliyi发布了新的文献求助50
5秒前
5秒前
观澜发布了新的文献求助10
7秒前
谷雨发布了新的文献求助10
10秒前
王波完成签到 ,获得积分10
12秒前
RE完成签到 ,获得积分10
13秒前
14秒前
14秒前
18秒前
19秒前
19秒前
星辰大海应助121231233采纳,获得10
20秒前
23秒前
王哈哈发布了新的文献求助10
23秒前
谢小强发布了新的文献求助10
27秒前
科研q完成签到 ,获得积分10
29秒前
王哈哈完成签到,获得积分10
35秒前
满意的又蓝完成签到,获得积分10
39秒前
41秒前
41秒前
44秒前
雨田发布了新的文献求助10
46秒前
共享精神应助小线团黑桃采纳,获得10
47秒前
50秒前
53秒前
121231233发布了新的文献求助10
56秒前
57秒前
哎哟完成签到,获得积分10
58秒前
张笑圣发布了新的文献求助10
1分钟前
年少丶完成签到,获得积分10
1分钟前
满意的柏柳完成签到 ,获得积分10
1分钟前
田様应助lhyxz采纳,获得10
1分钟前
科yt完成签到,获得积分10
1分钟前
嘟嘟雯完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
理系総合のための生命科学 第5版〜分子・細胞・個体から知る“生命"のしくみ 800
普遍生物学: 物理に宿る生命、生命の紡ぐ物理 800
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5606532
求助须知:如何正确求助?哪些是违规求助? 4690912
关于积分的说明 14866603
捐赠科研通 4706434
什么是DOI,文献DOI怎么找? 2542743
邀请新用户注册赠送积分活动 1508159
关于科研通互助平台的介绍 1472276