Enhanced Whale Optimization Algorithm with Wavelet Decomposition for Lithium Battery Health Estimation in Deep Extreme Learning Machines

锂离子电池 计算机科学 电池(电) 健康状况 均方误差 稳健性(进化) 极限学习机 荷电状态 人工智能 算法 人工神经网络 数学 统计 功率(物理) 物理 生物化学 化学 量子力学 基因
作者
Hairui Wang,Jie Luo,Guifu Zhu,Ya Li
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (18): 10079-10079 被引量:1
标识
DOI:10.3390/app131810079
摘要

Lithium battery health state estimation can help optimize battery usage and management strategies. In response to the challenges faced by traditional battery management systems in accurately estimating the State of Health of lithium-ion batteries and addressing issues such as capacity recovery and noise interference, this paper proposes a method based on wavelet decomposition and an improved whale optimization algorithm optimized deep extreme learning machine for estimating the SOH of lithium-ion batteries. Firstly, the lithium-ion battery capacity degradation sequence is extracted, and the wavelet decomposition method is used to decompose the battery capacity into global and local degradation trends. Next, the non-linear convergence factor and the whale optimization algorithm with adaptive weights are employed to optimize the deep extreme learning machine for predicting each trend component. Finally, the prediction results are effectively integrated to obtain the lithium-ion battery SOH. This experimental method is validated using NASA and CALCE datasets, and the results indicate that the root mean square error and mean absolute percentage error are both below 0.95%, with relative accuracy and absolute correlation coefficients exceeding 98%. This demonstrates the method’s excellent accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蟹黄堡不打折完成签到,获得积分10
刚刚
我必做出来完成签到,获得积分10
1秒前
安凉发布了新的文献求助10
1秒前
慕青应助Hupoo采纳,获得10
1秒前
2秒前
1l2kl完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI5应助徐徐采纳,获得10
3秒前
mfstone完成签到,获得积分20
3秒前
caicai完成签到,获得积分10
3秒前
汉堡包应助步行街车神ahua采纳,获得10
3秒前
禾泽发布了新的文献求助30
3秒前
3秒前
4秒前
科研通AI5应助lxh2424采纳,获得30
4秒前
5秒前
斯文芷荷完成签到,获得积分10
5秒前
6秒前
皮皮猫发布了新的文献求助10
7秒前
大方嵩发布了新的文献求助10
8秒前
魔幻灵槐完成签到,获得积分10
8秒前
悦耳的菠萝完成签到,获得积分10
9秒前
jy发布了新的文献求助10
9秒前
10秒前
10秒前
mfstone发布了新的文献求助10
10秒前
LiLi完成签到,获得积分10
11秒前
仁爱的老四完成签到 ,获得积分10
12秒前
李健的小迷弟应助学术z采纳,获得10
12秒前
科研通AI5应助归海紫翠采纳,获得30
13秒前
热情的初兰完成签到 ,获得积分10
14秒前
顺顺完成签到,获得积分10
14秒前
莫妮卡卡完成签到,获得积分10
14秒前
nbing完成签到,获得积分10
15秒前
SCI发布了新的文献求助50
15秒前
小猫多鱼完成签到,获得积分10
16秒前
16秒前
16秒前
默默尔烟发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794