FGA: An Allometric Model for Revealing the Relationship Between Fractal Geometry and AGB Estimation

异速滴定 分形 树木异速生长 胸径 分形维数 均方误差 树(集合论) 数学 生物量(生态学) 统计 几何学 遥感 算法 生态学 地质学 生物量分配 生物 数学分析
作者
Zhenyang Hui,Shuanggen Jin,Pengfei Cheng,Yao Yevenyo Ziggah
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12
标识
DOI:10.1109/tgrs.2023.3335197
摘要

Above-ground biomass (AGB) is an important indicator for studying and understanding the ecological environment. However, the traditional AGB estimation methods using terrestrial LiDAR data still suffer from biases for different tree species or forest sites as well as low accuracy using the tree metrics. To overcome these challenges, this paper developed a novel model based on fractal geometry. Firstly, a theory was built to reveal the relationship between fractal geometry and AGB estimation. To realize this, three different theories were involved, including fractal theory, traditional AGB estimation theory and stem form factor theory. The allometric AGB estimation equation was then developed based on fractal geometry parameters (i.e., fractal dimension and intercept). To test the proposed model, 101 individual trees located at different forest sites with corresponding harvested reference AGBs were adopted. Experimental results show that the proposed model can achieve better AGB results when compared with traditional allometric equations built upon tree metrics. All the utilized accuracy indicators revealed that the proposed method was the best. Relative root mean square error (RMSE) was improved by 53%, 22% and 18% when compared with traditional allometric models built upon diameter at breast height (DBH), tree height and the combined two variables (DBH and tree height). Furthermore, the performance of the developed model was also analyzed towards different tree species and different leaves on or off conditions. Results indicated that the developed model can produce satisfactory performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Akim应助个木采纳,获得10
2秒前
wanci应助jun采纳,获得10
2秒前
hh0发布了新的文献求助10
2秒前
慢歌完成签到 ,获得积分10
3秒前
一丁雨发布了新的文献求助10
3秒前
霸气老黑完成签到 ,获得积分20
4秒前
4秒前
研友_nxVrd8完成签到 ,获得积分10
4秒前
5秒前
张三的哥发布了新的文献求助10
5秒前
wangsen发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
丁爽完成签到,获得积分20
6秒前
好好学习完成签到,获得积分10
9秒前
劣根发布了新的文献求助10
9秒前
细腻的柜子关注了科研通微信公众号
9秒前
May完成签到 ,获得积分10
9秒前
巨人肩上完成签到,获得积分10
10秒前
10秒前
11秒前
hh0发布了新的文献求助10
11秒前
方赫然应助Hou采纳,获得10
12秒前
方赫然应助Hou采纳,获得10
12秒前
方赫然应助Hou采纳,获得10
12秒前
12秒前
13秒前
吃吃完成签到 ,获得积分10
14秒前
14秒前
桐桐应助饼饼又在睡觉采纳,获得10
15秒前
17秒前
甜美元冬完成签到,获得积分20
18秒前
科研通AI2S应助ZHANES采纳,获得10
18秒前
莫若舞完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245593
求助须知:如何正确求助?哪些是违规求助? 2889202
关于积分的说明 8257407
捐赠科研通 2557563
什么是DOI,文献DOI怎么找? 1386245
科研通“疑难数据库(出版商)”最低求助积分说明 650285
邀请新用户注册赠送积分活动 626578